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Abstract: The reliability of building performance simulation is hindered by several uncertainties, and aleatory 11 

uncertainty due to occupant behavior is one of the most critical ones. The present study aims to assess the 12 

propagation of uncertainty due to the adoption of stochastic models for modeling Occupant Presence and 13 

Actions (OPAs) available in the literature on the annual electric energy use of a reference office building. To 14 

this purpose, a global sensitivity analysis was designed and carried out by analyzing model inputs and energy 15 

outputs of 144 permutations of 15 different stochastic models for OPAs for a total of 7200 simulations. 16 

Building energy use computed considering stochastic OPAs modeling resulted in being sensibly higher than 17 

the reference value estimated assuming scheduled occupancy and rule-based occupant’s actions as suggested 18 

by reference standards. The median value of the electric energy use was 58.6% higher than the base case 19 

electric energy use. Furthermore, the stochastic models used to model window operation have the highest effect 20 

on energy output, followed by light switch-off and occupancy models. Light switch-on models showed a lower 21 

influence on the overall building energy performance. Furthermore, the Generalized Estimating Equations 22 

method was adopted to assess the interdependence among stochastic models for OPA and showed that 23 

changing the stochastic model in window operation, occupancy estimation, and light switch-off behavior 24 

generates a considerable difference in building’s energy performance. Contrariwise, the available stochastic 25 

models for light switch-on and blind operation perform quite similarly among each other and have a limited 26 

impact on a building’s energy performance. 27 
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1 Introduction 35 

Building performance simulation (BPS) is a cost-effective and fast method to better study building variants 36 

during the design phase and optimize building renovation concepts according to several and even antagonistic 37 

dimensions such as energy, costs, equivalent CO2 emissions, and occupant comfort [1,2]. Although accurate 38 

estimations are an essential requirement for the proper use of BPS, the reliability of its results is hindered by 39 

several uncertainties [3–5]. Most of the time, energy modelers solve this issue by simplifying aleatory 40 

uncertainties using deterministic variables, a priori schedules, and/or rule-based models [6]. Such 41 

simplifications are some of the causes of a disparity between simulated and actual energy use in buildings [7–42 

9]. The phenomenon is called the “performance gap” [1], and its study – started in the mid-90s – is still 43 

currently an object of interest for research and software development [10–13]. Carlucci et al. [14,15] studied 44 

the causes of this disparity, and approximate modeling of Occupant Presence and Actions (OPAs) is accounted 45 

as one of its primary causes. People influence building energy use passively through their presence and actively 46 

through interactions with the building’s components, such as operable windows, solar shadings, and 47 

thermostats, and the use of plug-in appliances and lighting [15]. It is common practice to model occupant 48 

presence in BPS via predefined a priori schedules and occupant actions with deterministic rules based on one 49 

or more physical variables [6]. However, these simple approaches are not able to account for the diversity 50 

between people and conditions and the variability of the interaction between occupants and the building. Thus, 51 

several studies have developed more complex models that aim to consider the human-building interaction, as 52 

reported in the various reviews conducted in recent years [15–19]. For example, Carlucci et al. [15] highlight 53 

that, in the last years, data-driven models are attracting increased interest, followed by stochastic OPA 54 

modeling techniques and rule-based methods. The growing attention towards data-driven models is related to 55 

their capability to deal with large datasets that are becoming more and more available without missing the 56 

aleatory nature of OPA in buildings [20–23]. While professionals are reluctant to model occupant-related 57 

uncertainty in their simulation  [6], the other modeling approach often-adopted in the scientific literature is to 58 

represent occupant behavior stochastically, and several probabilistic models are available in the literature to 59 

model the different aspects of OPAs [24]. However, further studies on applying stochastic models in energy 60 

simulations are required to understand their effect on a building’s energy performance and improve the energy 61 

models’ reliability. In this work, the use of the terms rule-based, stochastic, and data-driven models is in 62 

agreement with Ref. [15]. 63 

The evaluation of the impact of inputs on the BPS results is also becoming a widely studied aspect. In this 64 

regard, sensitivity analysis (SA) is a statistical technique that assesses the effect that changes in input or design 65 

variables have on the model output variables [25,26]. A better knowledge of the input-output interaction and 66 

uncertainty propagation allows estimating reliability of BPS results. Wang et al. [27] discussed variants of 67 

occupancy models with respect to various outcomes of interest such as HVAC energy consumption and peak 68 

demand behavior via a SA. Zhao et al. [28] developed a framework to carry out uncertainty analysis (UA) and 69 

SA using a Markov model for occupancy in real-time residential building energy demand models. In particular, 70 

UA and SA are exploited during the modeling phase to improve simulation outputs. Blight and Coley [29] 71 
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focused their attention on a SA of the effect of using realistic, quasi-empirical profiles for modeling occupancy, 72 

lighting operation, and appliances use on the energy consumption of passive house dwellings. Gaetani et al. 73 

[30] performed a SA on a medium-size office reference building model [31], introducing variations to building 74 

operations (such as HVAC, light, and equipment operation schedules, setpoints, occupancy schedules). 75 

Harputlugil and Bedir [32] studied through a SA the impact of presence, space heating, and ventilation controls 76 

on the resulting indoor temperature and space heating energy use in Dutch dwellings. Gaetani et al. [33], in 77 

2017, carried out a SA varying sixteen occupants-related input variants in an individual office model aiming 78 

to assess the influence of different levels of OPAs modeling complexity. Yousefi et al. [34] investigated the 79 

impact of different OPAs patterns on the energy performance of a multi-family residential building in Iran. 80 

Gaetani et al. [4] proposed a SA as an intermediate step in a novel methodology to decrease the computational 81 

effort to have the first estimate of OPA-related uncertainties in an actual office building in Delft, The 82 

Netherlands. Although the literature offers many examples of implementing stochastic models and assessments 83 

of the influence of single OPAs models on different performance indicators, the quantifications of interaction 84 

effects between models are rarely observed [33]. We believe that this information is essential when setting a 85 

building energy model that includes advanced occupant behavior modeling. Thus, starting from the studies 86 

and the results reported in previous literature, the present work analyzes the impact of different existing OPAs 87 

stochastic models on the energy use of an office building for a more realistic and accurate building energy 88 

analysis, and, for the first time, evaluates the interactions between different occupant behavioral models 89 

thoroughly, with the purpose of studying uncertainty propagation and estimating confidence intervals of 90 

building energy performance, understanding how the impact of a variable depends on the value of the other 91 

variables. Moreover, compared to the above-mentioned study of Ref.[33], which considers a single zone, the 92 

present research is performed on an entire building made of five thermal zones. 93 

Well-established stochastic models for occupancy, lighting switch-on and switch-off, window and blind 94 

operation in office buildings, and clothing insulation levels are selected from the literature. In the present study, 95 

a global sensitivity analysis (GSA) is performed by studying 7200 simulations of the ASHRAE 90.1 Small 96 

Office model. The model is described in Section 2.2. Since the purpose of this study is to assess the propagation 97 

of uncertainty due to stochastic occupant behavior modeling, the small-size office building is used as a test 98 

bench, because (1) the large majority of stochastic OPA models were developed from data collected and for 99 

use in offices and office-like buildings, and (2) it offers all the types of zones required to model a typical office 100 

building and test the different OPA aspects, whereas the medium-size office building does not add any 101 

additional parameters to test, but has many more zones, which increase the computational time required for 102 

running the simulations. The results are first analyzed in terms of OPAs model performance. Subsequently, 103 

the impact of each input variable is highlighted. Finally, the interaction effects between them are presented.  104 

2 Methodology 105 

The objective of this study is the assessment of the impact of different and already available OPAs stochastic 106 

models on building energy use. For this reason, an already well-studied building typology was adopted. As 107 
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emerged from the study conducted by Carlucci et al. [15], the vast majority of the OPAs models present in the 108 

literature describe occupants’ behavior in office buildings (i.e. 45% of the total analyzed models). Hence, the 109 

Small Office model from the ANSI/ASHRAE/IES Standard 90.1 Prototype Building Model Package [35–37] 110 

is chosen as a virtual test bench for the analysis. This is a conceptual building model whose direct simulation 111 

provides the reference performance value, and no actual observations are available to execute either validation 112 

or calibration. Widely used stochastic models for modeling occupancy, light/blind adjustments, windows 113 

opening/closing, and clothing insulation levels (Table 1) are selected based on the study by Gunay et al. [24]. 114 

Moreover, since some aspects of the behavior of occupants in a building are triggered by typical weather 115 

conditions, we identified the most representative climate zone where occupant data have been so far collected 116 

and used to develop stochastic models for OPAs, which is the temperate oceanic climate (Cfb in Köppen-117 

Gieger classification [38]) according to Ref. [15]. The temperate oceanic climate is characterized by moderate 118 

temperature year-round and the absence of a dry season. In particular, in the hottest month, the average 119 

temperature is below 22 °C, while in the coldest month, it goes from -3 °C to 0 °C. Hence, the Copenhagen 120 

IWEC (International Weather for Energy Calculations) climate file is used in this study. Assuming a setpoint 121 

temperature of 20 °C for space heating and 26 °C for space cooling, the yearly Heating Degree Days (HDD) 122 

for Copenhagen are 4289 HDD20 while the Cooling Degree Days is 1 CDD26. 123 

Table 1. Selected OPA stochastic models. 124 

Model 

code 

Developers OPA Climate zone  

(Köppen classification)  

C1 Schiavon and Lee, 2013 [39] Clothing insulation adjustment - 

O1 Reinhart, 2004 [40]  Presence Cfb 

O2 Wang, 2005 [41] Presence Csb 

O3 Page et al., 2008 [42] Presence Cfb 

Lon1 Reinhart, 2004 [40] Light switch-on Cfb 

Lon2 Hunt, 1979 [43] Light switch-on Cfb 

Loff1 Reinhart, 2004 [40] Light switch-off Cfb 

Loff2 Boyce, 2006 [44] Light switch-off Dfb 

B1 Newsham, 1994 [45] Blinds fully closed or opened Dfb 

B2 Reinhart, 2004 [40] Blinds fully closed or opened Cfb 

B3 Haldi and Robinson, 2010 [46] Percentage of closed blinds Cfb 

W1 Yun and Steemers, 2008 [47] Window positioning Cfb 

W2 Rijal et al., 2008 [48] Window positioning Cfa 

W3 Haldi and Robinson, 2009 [49] Window positioning Cfb 

W4 Haldi and Robinson, 2008 [50] Window positioning  Cfb 

 125 
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The ASHRAE 90.1 Small Office is modeled in EnergyPlus, and the selected OPA stochastic models are 126 

implemented in the EnergyPlus Runtime Language. To  exploit a GSA, energy simulations are run varying the 127 

OPAs input variables through the JEPlus software. Afterward, post-processing of the GSA results is 128 

implemented in three steps. Firstly, a simple stochastic projection of the impact of OPAs models on electric 129 

energy use is performed. Secondly, statistical analysis is carried out on all the probability distributions of 130 

energy use outcomes from all OPAs models using the software package IBM® SPSS® Statistics, version 24. 131 

Finally, the Generalized Estimating Equations (GEE) is used to study the main and interaction effects of input 132 

variables and their permutations.  133 

For the first step of the analysis, all the distributions are tested for normality using the Kolmogorov-Smirnov 134 

statistic given the sample size. Since the test result of the test for all the parameters shows a non-normal 135 

distribution for p ≤ 0.05, non-parametric statistic methods are adopted to explore the differences among 136 

different sets of data. The Mann-Whitney U test is utilized to understand the influence of the single variables 137 

(occupancy, window, and blind operations, lights switch on and lights switch off models).  138 

2.1 Description of the selected OPAs stochastic models 139 

Table 1 reports all the selected OPAs models, specifying the model’s code, developers, and the type of 140 

occupant behavior. As highlighted by Lindner et al. [51], one of the reasons why OB stochastic models are 141 

still rarely used is because existing BPS tools do not provide enough functionality to implement them, and 142 

models have to be altered or need assumptions to be implemented. In the present work, the simulation 143 

framework developed by Gunay et al. [24] with a timestep of 5 minutes has been adopted to implement the 144 

stochastic models in EnergyPlus 8.0 through the EnergyPlus Runtime Language.  145 

C1 model estimates the clothing insulation level in clo during the workdays according to the outdoor 146 

temperature in the morning and the internal operative temperature at each timestep. The clothing level model’s 147 

output works just as input in the calculation of predicted mean vote (PMV), which is an input parameter in the 148 

W2 window use model. Hence, C1 indirectly affects the building energy use only when the W2 window use 149 

model is employed. The occupancy models estimate the probability of occupant presence according to the time 150 

of the day. In particular, five different events at the beginning of each workday are initialized: time of arrival, 151 

morning coffee break, lunch break, afternoon coffee break, and departure. The duration period for each break 152 

is defined as a priori and, in both O1 and O2 models, these events are described by a normal distribution. 153 

Moreover, in the O2 model, the break durations are sampled from an exponential probability distribution. O3 154 

model employs two input parameters to forecast the probability of the arrival or departure events: (a) the daily 155 

profile of probability of presence and (b) the parameter of mobility that is the ratio of timesteps characterized 156 

by a change in the occupancy state considering the probability of arrivals, departures, and breaks. Lon2 is one 157 

of the first and most used OPA models available in the literature. It predicts the probability of switch-on the 158 

light according to the work plane illuminance1, as well as the more recent Lon1 model. The main difference 159 

 
1 The work plane illuminance has been estimated through the object “Daylighting:Controls” calculated by EnergyPlus in 
each “Daylighting Reference Points”, which are placed at 80 cm above the floor in each thermal zone barycenter. 
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among them is that the Lon2 model estimates the probability of switch-on light just at arrivals (both morning 160 

arrival and arrival after lunch break). At the same time, the Lon1 model allows the action also during 161 

intermediate occupancy. Loff1 light switch-off model estimates that occupants undertake an action at 162 

departures only (both lunch break departure and departure at the end of the day), not considering intermediate 163 

actions or daylight levels. On the contrary, in the Loff2 model, occupants are responsive to daylight. It 164 

computes the probability to undertake action during intermediate occupancy according to the duration of 165 

absence and the work plane illuminance. Conversely to the lighting models, the implemented blinds and 166 

windows operation stochastic models do not diversify the action of opening or closing. The models’ developers 167 

make use of specific variables (e.g., transmitted direct solar irradiance, direct solar irradiance at the work plane, 168 

arrival time, indoor or outdoor temperatures, etc.) to model the probability of state change of the blinds and 169 

windows operation. In particular, in the B1 blinds operation model, the blinds are opened at each arrival, and 170 

the probability for occupants to close their blinds is calculated according to the transmitted direct solar 171 

irradiance value. In the B2 model, closing probability depends on the direct solar irradiance at the work plane 172 

(0.8 m above the floor level). B3 blinds operation model uses two different multivariate models, one for arrival 173 

period and one for intermediate occupancy period. Unlike the previous ones, the B3 model allows closing 174 

action at any occupied period, considering a higher probability to open blinds at arrival. Moreover, B3 permits 175 

the blinds’ partial closure, while in the B1 and B2 models, the blinds are considered either fully opened or 176 

fully closed. In B3, action on blinds is predicted according to the blind unshaded fraction, the outdoor 177 

illuminance, and the work plane illuminance. In the W1, W2, W3, and W4 models, windows are fully closed 178 

or fully opened, without an intermediate position. All the models consider indoor and outdoor temperatures as 179 

primary predictors. Moreover, W3 uses rain as a binary predictor, estimating a lower probability of opening 180 

the windows if it is raining. 181 

2.2 The case study 182 

The case study of the present research is the Small Office prototype (Figure 1) from the ANSI/ASHRAE/IES 183 

Standard 90.1 Prototype Building Model Package [31]. 184 

 185 

Figure 1. 3D rendering of the ANSI/ASHRAE/IES Standard 90.1 Small Office Prototype. 186 

The Small Office [35–37] is a 511 m2 single floor building composed of 5 thermal zones. Among the different 187 

versions available for the different climate zones and building ages, and in agreement with the Cfb climate 188 

zone, the model selected is characterized by the technical features reported in Table 2. Space heating and 189 

cooling are provided by an air-source heat pump and the main energy carrier is electricity. In the ASHRAE 190 



   
 

   
 

7 

original model, windows are considered inoperable, and blinds are not available, representing a traditional 191 

office building. To have a second term of comparison, these two OPAs have been implemented in the 192 

ASHRAE original model through two rule-based models in which blinds close when the internal temperature 193 

is higher than 25 °C (i.e., 1 °C less than the setpoint) [52] and windows open during the night (from 9 p.m. to 194 

7 a.m.) if the outdoor temperature is greater than 15 °C exploiting night cooling [53] [54]. These two rule-195 

based models, used in the Copenhagen climate, lead to the functioning of windows and blinds only during the 196 

period that goes from April to September. The modified version of the ASHRAE model aims to implement 197 

new typical strategies used in office buildings to minimize the cooling load increasing the wellbeing of 198 

occupants.  In the text, this new model is referred to as “ASHRAE modified”. 199 

Table 2. Summary of the ASHRAE 90.1 Small Office model's main features. 200 

Feature Value or description 
Total floor area  511 m2 
Aspect ratio  1.5  
Number of floors  1  
Window-to-wall ratio  24.4% for south façade 19.8% for the North, East and West 

façades  
Thermal zoning  4 perimeter zones, 1 core zone, 1 attic zone  
Floor to floor height 3 m 
Floor to ceiling height 3 m 
Max number of occupants  31  
Available fuel types  Electricity for heating, cooling and SWH (Service Water 

Heating) plus gas for backup heating  
Heating type  Air-source heat pump with gas furnace as backup  
Cooling type  Air-source heat pump  
Average lighting power density  10.8 W/m2 
Average appliances power density 6.8 W/m2 
Service water heating type  Storage tank  
Construction  Wood-frame walls  
Structural type Lightweight 
Foundation 20 cm concrete slab poured directly on to the earth  
Wall U-value 0.363 W/(m2 K) 
Roof U-value 2.858 W/(m2 K) 
Floor U-value 2.144 W/(m2 K) 
Window U-value 2.371 W/(m2 K) 
Window Solar Heat Gain Coefficient 0.397 
Window visible transmittance 0.444 
Blinds Inoperable in the original ASHRAE model and close when the 

internal temperature is higher than 25 °C for the ASHRAE 
modified 
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Windows opening Inoperable in the original ASHRAE model and open during the 
night (from 9 p.m. to 7 a.m.) if the outdoor temperature is 
greater than 15 °C for the ASHRAE modified 

Other OPAs deterministic schedules Refer to Score Card available on the ASHRAE website [31] 
 201 

The ASHRAE Small Office uses electricity for around 99% of its energy consumption, while the remaining 202 

1% is covered by natural gas. Since gas is used only by the backup furnace of the heating system, which relies 203 

on electricity as a primary energy source, not considering natural gas energy use does not affect the reliability 204 

of the study. If the implementation of stochastic OPAs models influences space heating production, this will 205 

be quantified in the electrical energy use for space heating. 206 

2.3 Global Sensitivity Analysis 207 

SA is defined by Saltelli et al. as “the study of how uncertainty in the output of a model (numerical or 208 

otherwise) can be apportioned to different sources of uncertainty in the model input” [55]. There are two 209 

approaches to SA: the local sensitivity analysis (LSA), where the impact of an input variable’ variation on a 210 

model response is estimated keeping the values of the other input factors constant; and the global sensitivity 211 

analysis (GSA), where all the input variables are tested simultaneously. The latter enables assessing the impact 212 

on the model output of both individual parameters and interactions between parameters. GSA is performed 213 

through a matrix of inputs that sorts all the parameter values. 214 

In this work, GSA is performed to inspect the impact of stochastically modeling the OPAs on the building 215 

energy uses. The aim is to identify which of the analyzed behavioral models has the strongest influence in 216 

terms of variation of the output energy use. The input variables are the considered occupant behavioral models 217 

for each of the six categories: occupant presence, light switch-on, light switch-off, blinds use, windows 218 

opening/closing, and clothing insulation level (Table 1). Hence, the variability of the input variables is given 219 

by the different stochastic models used for each behavior. The variability in the output variable is due to the 220 

stochasticity of implemented OPAs models and the change of the OPAs models. We refer hereby to stochastic 221 

variability to refer to the former variability source and to model variability to refer to the latter source of 222 

variability. The scope of this work is to analyze model variability; in other words, how the selection of available 223 

stochastic OPA models affects the energy performance of the building. Combining all the models in Table 1, 224 

the possible permutations are 144. Figure 2 schematizes the permutation paths used in the simulations. The 225 

main effect and interaction effect analyses are two useful studies that can be performed on GSA results to 226 

assess, in our case, the model variability. The former allows evaluating the impact of single parameter 227 

variability on the output while the latter enables evaluating the variability of a couple (or more) of parameters. 228 

While the main effect analysis shows the first-order effects, the interaction effect analysis deals with the 229 

second-order effects and allows assessing the mutual influence of parameters. 230 
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  231 

Figure 2. Representation of the GSA's permutations. 232 

2.3.1 Stochastic variability and the number of simulations 233 

Stochastic models have a random variable. A stochastic model is a tool for estimating probability distributions 234 

of potential outcomes by allowing for random variation in one or more inputs over time. Distributions of 235 

possible outcomes are derived from numerous simulations (stochastic projections), reflecting the random 236 

variation in the input(s). 237 

The use of stochastic models for modeling OPA implies that a building’s performance is estimated through a 238 

probability distribution of the potential outcomes generated by allowing for random variation in the input 239 

variables (i.e., the OPA models implemented). The probability distribution of the building’s energy use is 240 

derived from running several times the same simulation to let the random variation in the input variable 241 

propagate. However, the identification of a suitable number of simulations has to consider the trade-off 242 

between a proper stochastic propagation and a doable computational time. Feng et al. [56] developed an air-243 

conditioning usage probability model based on surveys and measurements and discussed the issues of multiple 244 

runs and proper time-step to adopt when simulating stochastic models. Also, this study provided a 245 

methodological framework to evaluate the accuracy of the stochastic models’ simulation results. They 246 

highlighted the importance of mean and standard deviation in assessing the most reliable number of simulations 247 

and concluded that 10 simulations were adequate to evaluate mean space cooling energy consumption with a 248 

high confidence level. Following a similar approach, in this paper, mean and standard deviation are used to 249 

identify the suitable number of simulations for each permutation of the input OPA variables. The principle is 250 

to identify the minimum number of simulations at which the mean and standard deviations of the output 251 

variable reduce variability and converge to stability. In this regard, five repetitions of 200 simulations are run.  252 

An ideal convergence is not achieved in 200 simulations, but stabilization of the mean and standard deviation 253 

is reached for more than 50 simulations. This behavior can be explained by the large randomness of the 254 

analyzed problem, where six stochastic models are used as input variables for the simulation. This, as expected, 255 

shows a high output variability. The standard deviation here presents an average value between 17% and 20% 256 
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with respect to the mean, which can be considered an acceptable value for the accuracy required by the study. 257 

Based on the results reported by the study of Feng et al. [56], research conducted by Gaetani et al. [30], and 258 

the convergence analysis in Figure 2, 50 simulations per each of the 144 permutations have been chosen for a 259 

total of 7200 simulation tasks. This number is considered a reasonable trade-off for allowing stochastic 260 

propagation of randomness of input variables in a doable simulation time. The parametrical tool for energy 261 

simulations JEPlus has been used to drive the dynamic energy simulation engine EnergyPlus in the simulation 262 

tasks. The simulations have been carried out on a remote server equipped with 8 cores (16 threads) Intel® 263 

Xenon® E5-1660 v3 with a clock frequency of 3.000 GHz and 16 GB random access memory. Considering an 264 

average run-time of 12 minutes for each simulation, approximately 1440 hours were used to run the entire 265 

simulation set. 266 

2.3.2 Post-process of GSA results with Mann-Whitney U test and GEE 267 

Mann-Whitney U test is the non-parametric test equivalence of the t-test for independent samples. Rather than 268 

comparing the means of the two groups, as in the t-test, the Mann-Whitney U test compares medians. If the 269 

significance level (p) provided by the Mann-Whitney U test is lower than 0.05, there is a statistically significant 270 

difference between the two tested samples. Gaetani et al. [33] performed a sensitivity analysis by means of the 271 

Mann-Whitney U test and concluded that the test is a suitable statistical method to determine the aspects of 272 

Occupant Behavior (OB) that are influential for the results. For the purpose of this study, the same analysis 273 

was used to identify the most important input variables (in our case the OPA categories) in explaining the 274 

variability of the response (in our case the building electric energy use). 275 

To account for the dependency between the repeated measures, that is 50 simulations for each of 144 276 

permutations, several methods for repeated methods design can be used [57]. As described in Section 2, 277 

probability distributions of responses do not follow a normal distribution. Therefore, the Generalized 278 

Estimating Equations (GEE) method was used in this study to account for the potential dependency between 279 

the simulations runs of each permutation. The method is developed by Liang and Zeger [58] to produce 280 

regression estimates when analyzing repeated measures with non-normal response variables. This allows 281 

interpreting the effect of each parameter while accounting for the influence between them.  The GEE method 282 

has been used in previous OPA studies. Mayer et al. [59] applied the method for analysis of user behavior 283 

regarding opening windows. The study concluded that window states during a day are correlated, i.e. time-284 

dependent autocorrelation between single window openings. They recommended that for proper modeling, 285 

this dependency has to be taken into account and found GEE to be an appropriate method respecting the 286 

autocorrelation of the data. Inkarojrit et al. [60] conducted a window blind usage field study, where each 287 

participant was surveyed 1 to 4 times at approximately every two hours. The GEE method was used to take 288 

into account within-subject covariates for their repeated measurements on window blind control behavior. In 289 

this study, the GEE analysis was set up in the software package IBM® SPSS® Statistics version 26. The model 290 

permutations were treated as subject variables, and the number of runs was considered as within-subject 291 

variables. [61]. 292 
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3 Results and discussion 293 

In this section, the results obtained from the GSA are presented and discussed. The results are reported in terms 294 

of total electric energy use that includes electric energy need for heating, cooling, interior and exterior lighting, 295 

interior equipment, fans, and water system. Moreover, the heating and cooling electric energy use are analyzed 296 

as results. The base case building’s total electric energy use considering the Copenhagen climate is 77.3 297 

kWh/(m2 y), while the electric use for heating and cooling are respectively 5.7 kWh/(m2 y) and 3.2 kWh/(m2 y). 298 

These represent the reference values of the following analysis, and hereby they will be indicated as the 299 

“baseline”. At the same time, the ASHRAE modified model shows a total electric energy use of 300 

83.2 kWh/(m2 y) and an electric use for heating and cooling respectively of 6.8 kWh/(m2 y) and 2.8 301 

kWh/(m2 y). Clothing insulation level does not directly impact the electric energy use of the building and it is 302 

not considered in the base case scenario. However, in the scenarios where stochastic models are implemented, 303 

it works as an input for the PMV calculation that influences the window operation model W2 as described in 304 

Section 2.1.  305 

3.1 Stochastic projection of OPA models on the building’s energy use 306 

To let the propagation of random input variables of the OPA models, each permutation is run 50 times. Next, 307 

all the 144 permutations of Figure 1 are simulated. In Figure 3, the impact of each stochastic OPA model on 308 

the building’s total electric energy use, electric use for space heating and cooling are presented and compared 309 

with the reference performance of the baseline and the ASHRAE modified model. Each boxplot represents the 310 

distribution of the values of the building’s energy use calculated by choosing one given stochastic OPA model 311 

and testing all available stochastic models for the other different aspects of occupant behavior simultaneously.  312 

 313 

  314 

Figure 3. Distribution of the values of building’s energy use calculated for each stochastic OPA model when testing simultaneously 315 
all available stochastic models for the other different aspects of occupant behavior highlighting the total electric energy use, the 316 
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electric use for space heating and cooling. 317 

Analyzing Figure 3, for the total electric energy use, among occupancy models, the O1 and O2 models perform 318 

quite similarly. In contrast, the O3 model, which generally estimates higher numbers of occupied hours, causes 319 

a larger electric energy use. The median of electric energy use is around 44% higher than the deterministic 320 

value for both O1 and O2 models, whereas the median value of the O3 model is 96.1% higher than the reference 321 

one. Lon1 and Lon2 are two switch-on models and behave very similarly: they respectively predict an annual 322 

electric use with a median that is 58.7% and 58.6% greater than the baseline. On the contrary, the Loff1 and 323 

Loff2 switch-off models show different results. Loff1 has a median value of the energy use of 103.31 kWh/(m2 324 

y), which is 33.6% higher than the base case electric energy use. Loff2 has a median value of the energy use 325 

of 140.4 kWh/(m2 y) which is 81.6% higher than the baseline electric energy use. The three blinds control 326 

models perform similarly: the median is 122.8 kWh/(m2 y) for B1, 121.3 kWh/(m2 y) for B2, and 327 

123.6 kWh/(m2 y) for B3. These values are respectively 58.8%, 56.9%, and 59.9% higher than the baseline 328 

annual electric energy use. Windows operation models generate more variability in the results compared to 329 

other occupants’ actions. W1 produces a median that is 57.1% higher than the reference one. W2 and W3 330 

present a median respectively 25.4% and 45.5% higher than the base case value. W4 presents a median value 331 

that is 138.7% higher than the reference one, which is the highest median value of annual electric energy use 332 

among all the analyzed models. W1, W2, and W3 present narrow and asymmetrical distribution toward lower 333 

values. W4 presents the most spread and high distribution of energy use among the windows models. 334 

Comparing the distribution of the results of each OPAs model, windows operation models show the narrowest 335 

box plots. On the contrary, O3 has the most spread output distribution and a relatively high median value. 336 

Finally, the median of the entire distribution of all the results was calculated to be 58.6% higher than the base 337 

case energy use. 338 

The electric use for space heating is very similar to the base case except for the W1 model, with the range of 339 

the median values between -4% and 27%. Whilst W1’s median value is 105% higher than the baseline. A 340 

larger difference, in terms of percentages, is registered in the electricity used for cooling. Model W4, O3, and 341 

Loff2 bring to a higher electric consumption for cooling, while all the other models have a decreasing effect. 342 

Especially W1 and Loff1 change the median electric use for cooling of -38% and -21% respectively. This is 343 

since the W1 model allows windows to open more often, and Loff1 triggers a mechanism that drastically 344 

decreases the solar gains during the summer period. The largest difference is registered in the electric use for 345 

lighting, as a matter of fact, different the OPAs, except the clothing model and the windows opening models, 346 

are directly affecting the use of electric lighting (i.e., occupancy is changing the probability of turning on and 347 

off the lights, the blinds are changing the radiation impinging on the work plane).  348 

Overall, all the implemented stochastic models always generate a higher total electric energy use than the 349 

reference ASHRAE base case. Although the theoretical nature of the case under study did not permit to gather 350 

infield data on electric energy use, it is possible to consider that the stochastic modeling of OPAs is more 351 

realistic if compared to the deterministic profiles when the modeled actions are effectively possible in a real 352 

building. Stochastic simulation allows considering the randomness and the variability of the interaction 353 
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between people and buildings by estimating the probability to undertake action as a response to one or more 354 

input variables. Hence, considering the results of implemented models, it is very likely that the deterministic 355 

OPAs simulation underestimates the building energy uses, leading to, eventually, unreliable and overoptimistic 356 

building design performance. The underestimation of building energy uses could cause different issues such 357 

as wrong-sized systems, incorrect estimation of meeting energy-efficiency targets. Another consideration that 358 

can be made is that the selected models were developed from data collected in buildings that are far from the 359 

nearly zero-energy target set by EPBD and are located in a climate zone (Cfb) where the summer period is not 360 

severe and quite limited. Therefore, if these models are applied in high-performance buildings–like the 361 

analyzed case study–, the impact on the energy uses for space heating and cooling is strongly dependent on 362 

some decisions imposed by the energy analyst, for example, the duration of the conditioned period or the set-363 

point temperatures, rather than representing the thermal and energy response of the building. The use of these 364 

models outside the original climate zone may have a critical impact on the results, but, until now, no systematic 365 

work has been developed to study the transferability of these stochastic models to summer-dominated climates. 366 

Thus, we recommend careful use of these models in conditions different from those of the original data sources 367 

(e.g., climate zone, building use, room type, number of users per thermal zone) because they may completely 368 

shift the thermal and energy response of a building. 369 

3.2 Single parameter impact on the variation in overall distribution 370 

The probability distribution calculated for each OPA model is compared to the overall distribution using the 371 

Mann-Whitney U test and presented in Figure 4 and Table 3. The test allows assessing the overall most 372 

important OPA models by evaluating their effect on the overall distribution variation. We remind that the 373 

difference between the medians is considered in this study statistically significant if the p-value is not higher 374 

than 0.05. 375 

 376 

Figure 4. Comparison of probability distribution calculated for each OPA model to the overall distribution using Mann-Whitney U 377 
test. 378 

Table 3. Descriptive statistics and estimation for differences between probability distribution calculated for each OPA model to the 379 
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overall distribution using the Mann-Whitney U test. 380 

Descriptive Statistics Estimation for difference Test 
Sample N Median Difference 95% CI for difference p-value 
Overall 7200 122.63 - - - 
W1 1800 121.42 0.72 (-0.70; 2.16) 0.31 
W2 1800 96.92 -25.19 (-26.89; -23.75) 0.00 
W3 1800 112.45 -10.07 (-11.94; -8.49) 0.00 
W4 1800 184.49 61.40 (59.47; 63.25) 0.00 
O1 2400 111.14 -8.06 (-9.80; -6.38) 0.00 
O2 2400 111.56 -9.03 (-10.76; -7.34) 0.00 
O3 2400 151.62 21.07 (19.43; 22.89) 0.00 
Lon1 3600 122.68 -0.24 (-1.38; 0.84) 0.65 
Lon2 3600 122.60 0.24 (-0.84; 1.39) 0.65 
Loff1 3600 103.31 -12.38 (-14.02; -10.71) 0.00 
Loff2 3600 140.40 14.84 (13.29; 16.40) 0.00 
B1 2400 122.78 0.13 (-1.16; 1.45) 0.82 
B2 2400 121.29 -0.63 (-1.98; 0.58) 0.31 
B3 2400 123.60 0.51 (-0.72; 1.81) 0.43 

 381 

As expected, the windows parameter mostly influences the building energy response, followed by occupancy 382 

and light switch-off models. Light switch-on and blinds models show an almost negligible effect. This is 383 

because, as shown in Section 3.1, the light switch-on models [40,43] and the blinds control models [40,45,46] 384 

perform very similar among each other, with a small difference in terms of output distributions. It means that, 385 

according to the models selected and the performed analysis, the change in light switch-on and blind models 386 

(i.e., changing the stochastic predictive model) does not lead to significant variation in output. 387 

3.3 Parameters’ main and interaction effects analyses 388 

The interaction effects analysis allows understanding how the impact of a variable depends on the value of the 389 

other variables. To analyze the results from the 7200 simulations, the method of Generalized Estimating 390 

Equations (GEE) was exploited. This method allows identifying OPAs models that significantly contributed 391 

to the estimated energy use while considering the dependency between the 50 repeated runs of each 144 model 392 

permutations. To find the optimal variable combination, a stepwise approach was used in which one variable 393 

was added to the model at the time. The contribution of each variable was judged by the goodness-of-fit score 394 

Quasi-likelihood under Independence Model Criterion (QIC). According to this criterion, the variable 395 

combination giving the lowest QIC value is considered the best [62]. The results of the stepwise approach to 396 

finding the best model, including main and interaction effects based on the lowest QIC, are presented in Table 397 

4. 398 

 399 

Table 4. Stepwise approach of finding best model judged by the goodness-of-fit score Quasi-likelihood under Independence Model 400 
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Criterion (QIC)  401 

 Model combination QIC 
Main Effects W 592.09 

W, O 543.04 
W, O, Loff 187.32 
W, O, Loff, Lon 203.24 
W, O, Loff, Lon, B 234.95 

Main and interaction effects 
excluding Lon and B models 

W, O, Loff, W*Loff 179.46 
W, O, Loff, W*Loff, O*Loff 180.60 
W, O, Loff, W*Loff, O*Loff, W*O 170.15 

 402 

The analysis found the model with main effects Windows (W), Occupancy (O), and Light switch-off (Loff) to 403 

be the best-fitted model with the lowest QIC. This means that changing the stochastic model in one of these 404 

variables could generate a considerable difference in the output results. Contrariwise, Light switch-on and 405 

Blinds variables had a low impact on output, meaning that the performance of the stochastic models performs 406 

quite similar among each other. This result also reflects the nature of the behaviors themselves: windows 407 

operation and occupancy are difficult to predict [63,64]. In contrast, blind operation depends on incident solar 408 

irradiance that can be estimated from the windows’ orientation and the geometrical feature of the solar device. 409 

A similar consideration can be made for the mechanism of switching the lighting on when the available 410 

illuminance becomes low. 411 

GEE allows inspecting the variability in output further, considering the interaction effects among input 412 

parameters. As expected, the model with the lowest QIC is registered for the permutation of Windows, 413 

Occupancy, Light switch-off, and all their interaction effects (W, O, Loff, W*Loff, O*Loff, W*O). The results 414 

of interaction effects show again that the simultaneous variation of Light switch-on or Blinds and the other 415 

parameters has a low impact on simulation output. In other words, the impact of the Light switch-on or Blinds 416 

variables does not depend on the other parameters’ values.  417 

The interaction analysis revealed the parameters’ second-order effects and allowed considerations on the 418 

influence between parameters in terms of output variation. This analysis could be a valid help in making a 419 

conscious building energy design. When implementing OPAs in building energy model, the interaction 420 

between different actions in terms of output is useful information in the actions’ and models’ selection process. 421 

4 Conclusions and future outlooks 422 

The present work aimed to assess the impact of stochastically modeling occupant presence and actions (OPAs) 423 

in building energy simulations. A global sensitivity analysis (GSA) was set up by simulating 144 permutations 424 

of all the single OPAs models of each input OPAs category and obtaining 7200 simulations performed in 425 

JEPlus. GSA helps to study how the uncertainty in the building electricity use can be apportioned to the 426 

different OPAs and analyzed in terms of the impact of every single model, main and interaction effects. 15 427 

stochastic OPAs models have been selected based on their wide use in literature. Specifically, three models of 428 
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occupant presence [40–42], four models for the lighting switch-on [40,43] and switch-off [40,44], one clothing 429 

model [39], three models for blinds opening [40,45,46], and four models for window opening [47–50] were 430 

used in the analysis. The ASHRAE Small Office prototype [31] and Copenhagen IWEC weather data were 431 

identified as the most suitable to perform this comparative test bench. In the original ASHRAE model, the 432 

occupants are modeled in a fully-determinist way. Thus, a modified version of the small office ASHRAE 433 

model has been added as a reference. In this modified ASHRAE model, blinds close when the internal 434 

temperature is higher than 25 °C and windows open during the night (from 9 p.m. to 7 a.m.) if the outdoor 435 

temperature is greater than 15 °C exploiting night cooling. 436 

The analyses of results were performed in terms of annual electric energy use per square meter of net floor 437 

area. Concerning the performance of the building model that implemented fixed deterministic profiles (e.g., 438 

assuming fixed schedules of occupants’ presence) and rule-based behavioral models, the implementation of 439 

stochastic models for OPAs always increased the building energy use. From the analysis, it emerged that 440 

windows models create the highest variability in the results, both in terms of variance and median values 441 

compared to the other actions. Light switch-off and Occupancy models generate notable differences in output 442 

results, while regarding Light switch-on and the blinds control models, only small variations were revealed by 443 

implementing the different models. 444 

The dataset from simulations was then analyzed in terms of the variables’ main effect and interaction effects 445 

through the Generalized Estimating Equations (GEE) approach. In the present GSA, the variables are the 446 

implemented behaviors (i.e., Occupancy, Light switch-on, Light switch-off, Blind control, and Window 447 

operation). This analysis confirmed that Window operation has the highest effect on output, that is choosing a 448 

different stochastic model for windows’ operation changes greatly the energy performance of a building, 449 

followed by Occupancy and Light switch-off. Blind control and Light switch-on variables resulted as the least 450 

influential parameters, meaning that their stochastic models compute similar distributions of total energy use 451 

required by the building. Moreover, the interaction effects analysis showed that the interaction between 452 

Occupancy and Window operation has an important impact on outputs, meaning that the change of occupancy 453 

and windows operation models influence reciprocally beyond impacting individually on the electric energy 454 

use. On the contrary, the interaction of the light switch-on models and the other variables showed a very low 455 

impact on outputs.  456 

The present study is affected by some limitations. First, results apply to the stochastic models implemented 457 

into the analysis; with the development of further stochastic models or data-driven models suitable to be used 458 

in the same conditions characterizing this case study, broader conclusions might be obtained. Next, one single 459 

control variable for all the occupants as well as one controller for all the lights has been implemented in each 460 

thermal zone of the building model. By modeling a higher number of occupancy variables and lights’ 461 

controllers, more realistic conditions might be represented, although longer simulation times would be 462 

required. The improvement of the aforementioned aspects might be helpful in future studies to enhance the 463 

generalizability of findings. Moreover, the presented methodology could be used in further research regarding 464 

different building typologies (e.g., residential, commercial), implementing related OPAs models.  465 
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Finally, we would point out the issue of using stochastic models for occupants’ presence and actions in 466 

conditions outside the development ones. Few models are currently available for other building types or 467 

climate zones, and the reliability of transferring the available stochastic models outside their development 468 

conditions has not been evaluated yet. Thus, we recommend careful use of these models in conditions different 469 

from those of the original data sources (e.g., climate zone, building use, room type, number of users per thermal 470 

zone) because their use may completely alter the thermal and energy response of a building. 471 
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7 APPENDIX A – ASHRAE 90.1 Small Office deterministic models for 647 

OPAs 648 

The ASHRAE 90.1 Small Office deterministic models for the OPAs considered in this paper are reported in 649 

the charts below. It is worth remembering that in the original building model, blinds use, and windows opening 650 

are not considered.  651 

 652 

Figure 5. ASHRAE 90.1 Small Office schedule for occupancy rate. 653 

 654 

Figure 6. ASHRAE 90.1 Small Office schedule for lighting use factor 655 

For clothing insulation level, ASHRAE 90.1 Small Office considers 1 clo from 30th September to 30th April 656 

and 0.5 clo from 1st May to 29th September.  657 

 658 

 659 

 660 
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8 APPENDIX B – Stochastic OPAs models results 663 

Figure 7: Timestep values of clothing insulation level, in terms of clo. The daily profile of a random weekday for each month are 664 
represented through colored lines. 665 

Results generated by each OPAs model are reported in the charts below. The ASHRAE 90.1 Small Office 666 

deterministic profile is reported using a black line. 667 

 668 

Figure 8. Timestep values of clothing insulation level, in terms of clo. The daily profile of a random weekday for each month are 669 
represented through colored lines. 670 

 671 

Figure 9. Occupancy profiles obtained from the implementation of O1 model (a), O2 model (b) and O3 model (c). Each colored line 672 
represents a daily occupancy profile selected randomly from yearly simulation. 673 
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 674 

Figure 10. Lighting use profiles obtained from the combination of Lon2+Loff1 (a), Lon1+Loff2 (b), Lon1+Loff1 (c) and Lon2+Loff2 675 
(d). Each colored line represents a daily Lighting use profile selected randomly from yearly simulation. 676 

 677 

Figure 11. Monthly closed blinds rate obtained implementing B1 model (a), B2 model (b) an B3 model (c). These results represent 678 
the monthly rate of hours in which blinds are totally closed. The results are reported for each thermal zone. The values are also 679 

reported in tables. 680 
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a)          b) 683 

 684 
Figure 12. a) Occlusion rate of all the possible blinds position predicted using B3 model. b) representation of all the possible blinds 685 

positions colored in accordance with figure a). 686 

 687 

Figure 13. Monthly window opening rate using W1 model (a), W2 model (b), W3 model (c) and W4 model (d). These values 688 
represent the monthly rate of hours in which the windows are closed for each thermal zone. 689 
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