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Abstract—Alexithymia is a trait that reflects a person’s dif-
ficulty in recognising and expressing their emotions, which has
been associated with various forms of mental illness. Identifying
alexithymia can have therapeutic, preventive, and diagnostic
benefits. However, there has been limited research on proposing
predictive models for alexithymia, and literature on multimodal
approaches is almost non-existent. In this light, we present a
novel predictive framework that utilises multimodal physiological
and audio signals, such as heart rate, skin conductance level,
facial electromyograms, and speech recordings to detect and
classify alexithymia. To this end, two novel datasets were col-
lected through an emotion processing imagery experiment, and
subsequently utilised on the task of alexithymia classification by
adopting the TAS-20 (Toronto Alexithymia Scale). Furthermore,
we developed a set of temporal features that both capture spectral
information and are localised in the time-domain (e.g., via
wavelets). Using the extracted features, simple machine learning
classifiers can be used in the proposed framework, achieving up
to 96% fl-score - even when using data from only one of the
12 stages of the experiment. Interestingly, we also find that
combining auditory and physiological features in a multimodal
manner further improves classification outcomes. The datasets
are made available on request by following the provided github
link.

Index Terms—Affective Computing, Multimodal Machine
Learning, Alexithymia.

I. INTRODUCTION

Alexithymia, a personality trait, was originally defined by
Sifneos in 1972 [[1] as the difficulty in recognising, naming,
and describing emotions with words. Alexithymic individuals
tend to focus their thoughts on external stimuli [2]]. Although
it is not considered a psychiatric disorder, it is associated with
various mental and physical health issues [3]]. Clinically sig-
nificant alexithymia affects 10% of the general population [4].

The Toronto Alexithymia Scale (TAS-20) is a popular self-
reporting tool used to subjectively evaluate alexithymia. Since
it is the self-reporting instrument that is most frequently
utilised, it is regarded as the industry standard [5]]. However,
it has been highlighted that alexithymia is also characterised

by variances in physiological responsiveness to emotional
experiences, despite the fact that research in the subject has
frequently produced conflicting conclusions about the nature
of these distinctions [|6]. Additionally, these physiological
variations are frequently believed to be key elements con-
tributing to the phenomenology of alexithymia, as well as
its causation and maintenance, although this assumption [7]]
has not yet been scientifically supported. The core difficulties
of alexithymia must be identified in order to determine the
relative contribution of physiological markers during emo-
tion processing. To do so, researchers can utilise cutting-
edge technological and statistical methods, such as Machine
Learning (ML), which enables the simultaneous assessment
of multiple signals as they unfold dynamically over time [J].
Additionally, effective predictive models have the potential
to be implemented in embedded systems, notably wearables.
Technical advantages include shorter experimental times, real-
time remote patient monitoring, less intrusive physiological
signal measurement, and cost-effectiveness compared to more
expensive ML algorithms [9]. Indeed, this line of research can
help us better understand alexithymic deficits, such as whether
they are arousal-related (depending on the intensity of emo-
tions as reflected in Autonomic Nervous System (ANS) signals
like skin conductance) or valence-related (depending on the
unpleasantness of a situation as reflected in facial expression
signals). Importantly, it can also have clinical implications
since detecting and treating alexithymic issues could stop the
emergence of diseases that are closely associated to them in
the future (i.e. depression).

To the best of our knowledge, this is one of the very
few attempts to exploit multi-modal signals as predictors for
alexithymia using ML. We provide a method for detecting
alexithymia using five physiological signals that were obtained
from four different modalities (electrocardiogram (ECG), elec-
trodermal activity (EDA), and electromyography (EMG) [10])
and speech. We specifically design a novel set of features that
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capture spectral and temporal information from multimodal
signals, and then cross-modal correlations in the feature space
are captured using simple classification techniques. We assess
our approach using two datasets from studies that employed
emotional imagery to evoke emotions with the goal of using
the TAS-20 to spot variations between control and alexithymic
volunteers [11]. We demonstrate that the suggested framework
can result in an fl-score of up to 96% using data from only
a tiny section of the experiment, a finding that can result in
a reduction in the amount of time and money spent on the
experiment. The efficiency of the suggested method may make
it appropriate for low-power and embedded systems, and it
may also increase how well self-reporting tools are used.

This study expands on previous research [L1]-[13]] by (1)
including more subjects, (2) an additional modality (audio), (3)
new experiments using pre-trained models for audio, as well as
(4) new experiments and findings based on multimodal fusion.

We take into account the challenge of creating reliable alex-
ithymia baseline classifiers given five time-series physiological
and audio data from two datasets. Effective generalisation is
hindered by three factors: a lack of large open-access datasets,
a lack of established protocols that adhere to best standards
for evaluation, and excessive subject variability.

Our study recruited over 100 participants to gather physi-
ological and auditory data for creating accurate classification
models for alexithymia, a novel subject requiring more data.
The absence of a uniform evaluation process presents an
obstacle to advancement, as various papers may not use the
same experimental layout, rendering results incomparable.
Subject variability, including sensor positioning, head and
body motion, and noise, presents challenges for generalising to
new subjects or sessions. Without open data and benchmarks,
comparing distinct models is difficult.

The remainder of this paper is structured as follows: In
Section @ we overview related literature, contrasting to this
work. In Sections and [V] we describe the datasets,
methods, and results of the study respectively, while Section
discusses findings, limitations, and future research direc-
tions.

II. RELATED WORK

Emotion recognition using physiological signals has gained
significant attention from researchers in recent years [|14].
Several studies have been conducted to explore the poten-
tial of physiological signals, such as electroencephalogram
(EEG), electrocardiogram (ECG), and skin conductance re-
sponse (SCR), in recognising human emotions. The use of
ML algorithms to analyse physiological signals has enabled
researchers to develop more accurate and robust emotion
recognition systems. In this section, we present some of the
notable works that have been done in this area [15]].

There are two main approaches to ML: classical ML algo-
rithms that involve manual feature engineering (also known
as hand-crafting), and Deep Learning (DL) models that learn
hierarchical, compositional representations for specific tasks.
Various feature engineering techniques are available to extract

and select useful features. Some studies have used sequential
forward and backward feature selection methods [16], while
others have manually extracted features 9], [[17]. Furthermore,
these studies have found that between five and 14 features
are needed to achieve high performance scores for emotion
recognition [9], [16], [17].

In recent years, researchers have turned to DL algorithms
to predict emotions and their components, such as arousal,
valence, and dominance. The most commonly used DL al-
gorithms are Deep Neural Network (DNN) [[18], [19]], Con-
volutional Neural Network (CNN) [18]—[20]], and recurrent
neural network (RNN) models like Long Short-Term Memory
(LSTM) [19], [21]], [22]. For example, in one study, DNN
and CNN models were developed, and in another study [21]],
a bimodal LSTM was created for emotion recognition. Both
studies achieved mean accuracy greater than 75% for the
classification of valence and arousal. Other studies, [20] devel-
oped models for anxiety detection using different physiological
signals, such as using a 1D CNN trained on ECG-based fea-
tures to detect anxiety in arachnophobic individuals, achieving
an accuracy of 83.29%. Generally, DL models outperformed
simpler, traditional algorithms because they can better optimise
extracted features [19]], [22].

In addition, some studies have used spectral features ex-
tracted from physiological signals, which were then converted
into images and used in pre-trained models for classification
tasks. For example, both [23] and [24]] used deep transfer
learning for emotion recognition using physiological signals
to classify arousal and valence. Only one paper, Nima et al.
[8]], was identified as predicting alexithymia using ML, but by
recording a video of volunteers’ facial expressions.

This paper contributes to the field of affective computing by:
(1) introducing a model that predicts alexithymia using phys-
iological and audio signals, including ANS indices of arousal
and facial responses to emotional valence; (2) using the largest
dataset available for classifying alexithymia with physiological
signals; (3) identifying fft_coefficients and cwt_coefficients
as descriptive features for alexithymia classification; (4)
conducting extensive experiments to analyse the effect of
hyperparameters on model performance, and (5) making avail-
able upon request the two datasets of physiological signals.

III. DATASETS
A. Subjects

Young and healthy adults from two universities in Cyprus
participated in this study. The Greek-translated TAS-20 was
used to screen them for alexithymia, which is assessed through
difficulty identifying feelings, difficulty describing feelings,
and externally oriented thinking on a 5-point scale. The total
score was used to determine clinical levels of alexithymia,
with scores of 51 and below indicating low alexithymia, 52-59
indicating medium, and 60 and above indicating high. Exclu-
sion criteria included medical or mental health conditions that
could affect ANS reactivity and regular medication use [/13|].

For Dataset 1, we used a total of 54 eligible participants who
were categorised into two groups based on their alexithymia



levels: 27 participants with high alexithymia and 27 with
low alexithymia. The average age of the participants was
21.36 (SD = 2.95). Among the participants, eight identified
as male, while 42 identified as female. Half of the male
participants (n=4) were categorised as having low alexithymia,
while the other half (n=4) were categorised as having high
alexithymia. Among female participants, 21 were categorised
as having low alexithymia, and 21 were categorised as having
high alexithymia. We are missing demographic data from four
volunteers.

For Dataset 2, we included 65 eligible participants who
were categorised into three groups based on their alexithymia
levels: 11 participants with high alexithymia, 10 with medium
alexithymia, and 44 with low alexithymia. The participants had
an average age of 21.18 (SD = 2.52). Among the participants,
16 identified as male, while 48 identified as female. Of the
female participants, eight were categorised as having high
alexithymia, eight as having medium alexithymia, and 32 as
having low alexithymia. Among the male participants, one was
categorised as having medium alexithymia, three as having
high alexithymia, and 12 as having low alexithymia. We are
missing demographic data from one volunteer.

B. Experiment design

In this experiment, participants were provided with ten
standardised emotional scripts. The scripts were divided into
two categories of depth of processing: shallow processing and
deep processing [[13[]. The instructions for shallow and deep
processing differed in terms of the aspects of imagery to be
emphasised. For shallow processing, participants were asked
to vividly visualise the scene while recalling the details of
the imagined locations, such as objects, people, and animals.
For deep processing, they were directed to focus on affective
reactions and subjective experiences, visualising the scene as
if they were actively participating.

Each participant performed five scripts under shallow pro-
cessing conditions and five scripts under deep processing
conditions. Both depths of processing followed the same
procedure for each script, which involved a rest period of 20
seconds, followed by a 60-second phase 1 and a 40-second
phase 2.

C. Data acquisition

1) Data sources: BIOPAC MP150 for Windows and Ac-
gKnowledge 3.9.0 data acquisition software (Biopac Systems
Inc., Santa Barbara, CA) were used to obtain physiological
data. The researcher placed electrodes on the arms and face of
the participants following standard procedures. Additionally, a
tablet was used to record the audio recordings for dataset 2
solely.

The dependent variables included two signals that reflect
levels of arousal (heart rate (HR) and skin conductance level
(SCL)), and three signals that reflect changes in experienced
valence (orbicularis (ORB), corrugator (COR), zygomaticus
(ZYG)) measured during both baseline and emotional imagery.

At the end of each imagery trial, participants provided self-
reports of how they felt, including emotional labeling, valence,
arousal, and dominance ratings. The physiological signals
were filtered as described in detail by Constantinou et al.
[11]. In addition, for Dataset 2, participants provided audio
recordings expressing how they felt.

2) Imagery materials: Ten standardised emotional scripts
were selected from a larger pool of validated emotional
scripts that were specific to the community. The ten scripts
represented typical fear, joy, and neutral scenarios. Joy and fear
scripts were selected to differ considerably on valence but not
on arousal, while neutral scripts differed on both dimensions
from both joy and fear scripts. Affective imagery has been
successfully used to induce emotions of varied valence and
arousal levels [25]]. These three types of emotions allowed
for the independent investigation of the effects of valence and
arousal on physiological reactivity. The scripts were provided
to all participants in three semi-counterbalanced orders. They
were written in the first person, two sentences long, and
included references to physical reactions. Further information
and examples of the scripts can be found in Constantinou et
al. [[11].

3) Experimental protocol and set-up: Upon arrival at the
lab, participants were seated in a reclining chair placed in a
dark, sound-proof room. After providing informed consent,
they were given instructions and fitted with physiological
monitors. Prior to the experiment, a five-minute adjustment
phase was conducted to stabilise physiological data and famil-
iarise participants with the apparatus. Next, participants were
instructed on the depth of processing required for the trial, and
given an index card containing the imagery script to memorise.
At the sound of a tone, they began visualising the scripts. No
individuals were excluded from the study for not completing
the task, and there were no differences in task performance
across all groups [[11].

IV. METHODS

Deep Learning (DL) is commonly applied nowadays since
the developed network can learn and decide effectively on its
own. However, because the dimensionality of the signals is
frequently greater than the number of individuals (under the
same experimental settings), DL findings may be subpar. The
results of the pilot study [12] confirmed this. In this light,
we present a set of spectral features for alexithymia detection
using statistical hypothesis time-series on multiple time-series
features. In this method, we decrease the dimensionality of
the problem to a few scalars per time-series signal. Our
findings show that the developed features are discriminative
for alexithymia, with fl-score of up to 96% when only one
stage of the trial, e.g. Fear-Deep-Phase-1 (FDP1) or Joy-Deep-
Phase-2 (JDP2), is used.

A. Data pre-processing

The BIOPAC software files were imported into PythonTM
(v.3.8.8) for analysis. The extracted files had many columns
that represented time, HR, SCL, ORB, COR, ZYG, and digital



channels denoting the experiment’s stage. The digital channels
(i.e. experiment stages) were phase-1, phase-2, arousal, va-
lence, tone-1 (shallow processing), and tone-2 (deep process-
ing), all of which were represented by binary representations.
The phases were utilised to denote the experiment’s imagery
period, which were: baseline (20sec), first imagery period
(60sec), and second imagery period (40sec). The terms arousal
and valence were employed to describe the emotion of the
script. Finally, the tones were utilised to indicate whether
the experiment’s processing level was shallow or deep. As
previously stated, this describes how individuals reacted to
what they imagined at the end of the experiment.

Table [I] defines the signals and their modalities.

TABLE I: Modalities used to measure physiological signals

Modality Definition Physiological
signal
ECG Measures the potential differences identified ~ HR
at the skin surface due to electrical activity
of the heart
EDA Measures the electrical conductivity of the ~ SCL
skin
EMG Measures the skeletal muscle electric activ-  ZYG, COR,
ity at the skin surface. It is used for both ORB
facial or body expressions
Speech Represents the acoustic properties of the  Audio

spoken language

All of the physiological signals were captured at a sampling
frequency of 1000 Hzﬂ The following step was to select only
the data of interest, which contained the data from the ten
trials. This means that any data from inter-trial intervals was
eliminated. The values of the digital signals indicated this, and
the data was divided into separate stages depending on these
values. Additionally, all the audio signals were recorded with
a sampling frequency of 16000 Hz.

The raw data was independently downsampled for each
participant to improve memory complexity. The polyphase
filter resampling [26]] with down-sampling factor N = 300
was used to achieve the down-sampling. This number is equal
to three seconds, which is regarded sufficient for identifying
emotional shifts (empirical and trial-based evidence) [27]. The
data was resized to meet the needs of each algorithm.

B. Feature extraction and selection

Physiological signals and audio signals have distinct charac-
teristics. Heart rate or skin conductance, may require specific
feature selection methods tailored to their unique properties.
Similarly, audio signals may have different spectral, temporal,
or perceptual features that necessitate specific approaches for
feature selection. Using modality-specific feature selection
methods allows for better capturing and representing the

relevant information present in each modality. Hence, tsfres}ﬂ

'Except for phase-2, which had a sampling frequency of 125 Hz in some
cases due to human error. As a result, the initial step was to resample phase-2
signals to 1000 Hz as needed.

Zhttps://tsfresh.readthedocs.io/en/latest/

was used for physiological signals, and 1ibros;ﬂ was used for
audio signals.

1) Physiological signals: The tsfresh library was used to
efficiently extract and select relevant features from multivariate
signals [28]]. Tsfresh extracts (794) time-series characteristics
in order to explain a time series dataset in relation to a
target variable. Statistical hypothesis testing is used to assess
the discriminative performance and significance of retrieved
characteristics for a certain task. In our example, we chose
the ten most relevant attributes to provide into the classifier.

Several tsfresh traits were retrieved for each individual
experiment, resulting in 3915 attributes for each subject. The
importance of the aforementioned qualities was computed
using the target variable in order to keep the top ten for each
subject. As a result, the final data structure was a matrix X
€ R™* 19, where n is the number of participants. Table[[] shows
the top 10 features for the universal models of both datasets
1 and 2, where for dataset 2 only low and high alexithymic
participants were included.

TABLE II: Top k=10 features extracted via tsfresh. (a: Variance,
b: Absolute differences, c¢: Higher quantile, d: Lower quantile, e: Imaginary,
f: Absolute)

Dataset 1 - Universal
FFT Coefficient (Real), Coeff 20, ORB
Change Quantiles, F_agg Var?, Isabs® False, Qh° 0.4, Qld 0.0, ZYG

Change Quantiles, F_agg Var, Isabs True, Qh 0.4, QI 0.0, ZYG

FFT Coefficient (Imag®), Coeff 50, ECG

FFT Coefficient (Imag), Coeff 40, SCR

FFT Coefficient (Abs?), Coeff 33, SCR

FFT Coefficient (Abs), Coeff 69, ORB

FFT Coefficient (Real), Coeff 68, COR

Change Quantiles, F_agg Mean, Isabs True, Qh 0.4, QI 0.0, ZYG

Change Quantiles, F_agg Var, Isabs True, Qh 0.2, QI 0.0, ZYG

Dataset 2 - Universal

FFT Coefficient (Real), Coeff 50, SCR

FFT Coefficient (Angle), Coeff 50, SCR
CWT Coefficients, Coeff 4, W 2, Widths (2, 5, 10, 20), ZYG

FFT Coefficient (Imag), Coeff 5, SCR

FFT Coefficient (Imag), Coeff 5, ORB

FFT Coefficient (Real), Coeff 10, ZYG

FFT Coefficient (Angle), Coeff 80, SCR

FFT Coefficient (Real), Coeff 10, COR
CWT Coefficients, Coeff 10, W 2, Widths (2, 5, 10, 20), SCR
CWT Coefficients, Coeff 1, W 5, Widths (2, 5, 10, 20), ZYG

After looking at the top characteristics from all the
results, the most common features that occurred were
fft _coefficient and cwt_coefficients. The for-
mer, in particular, computes the discrete Fourier Transform
coefficients [29]], which are provided by:

N-1
i27m
Xp= Y ape” NH" ()
n=0

where N is the total number of samples in the input
sequence.

3https://librosa.org/doc/latest/index.html


https://tsfresh.readthedocs.io/en/latest/
https://librosa.org/doc/latest/index.html

The Fast Fourier Transform technique is used [30]. The
coefficient is calculated for either the real, imaginary, mag-
nitude, or angle in degrees’ components of the expansion.
Cwt_coefficients, on the other hand, provides a Con-
tinuous Wavelet Transform for the ‘Mexican hat wavelet’ [31]]

provided by:
2 12 —t2
1—— )ez? 2
3omi < 02) “ @

where o is the scale factor. When compared to other
wavelets, empirical evidence reveals that the specific wavelet
may characterise a signal with a very minimal number of
parameters [32]. The aforementioned features are retrieved
using a parallel feature selection approach that is based on
statistical hypothesis tests like the Mann-Whitney U [33] or
the Kolmogorov Smirnov [34]. These tests are set up based on
the label type (categorical or continuous) and the supervised
ML task at hand (regression or classification).

2) Audio signals: Many features were calculated from au-
dio sources using the librosa library. The nine Mel Frequency
Cepstral Coefficients (MFCC), zero-crossing rate, spectral roll-
off, spectral centroid, spectral contrast, spectral bandwidth,
and delta of MFCC coefficients were determined [35[]. After
that, the retrieved features are concatenated into a matrix.
The following features are available for each type of feature
extraction: mean, standard deviation, skewness, maximum,
median, and minimum values. The final matrix had 90 features
for each participant.

A DT was used to find the most descriptive features, and
then the top 10 features were selected to be used as input data
into the ML algorithms.

P(t) =

C. Classification

Deep neural networks (DNNs), decision trees (DT), ran-
dom forests (RF), multilayer percpetrons (MLP), and logistic
regression (LR) models with various hyper-parameter config-
urations were used for the classification models.

1) Deep Neural Networks: Training DL models from
scratch is a time-consuming and data-intensive procedure. In
the pilot study [[12], DNNs based on pre-trained networks
such as ResNet [36], DenseNet [37] and AlexNet [38] all
of which were pre-trained on the Image-Net dataset [39],
did not perform well on our dataset since the data we have
differs significantly from the data the pre-trained models were
trained with. However, in this study we used Wav2Vec [40]]
and HuBERT [41] pre-trained models on the audio dataset.

2) Logistic Regression: The LR algorithm is a classification
algorithm. Based on a set of independent variables, it is used
to calculate (or forecast) a binary (yes/no) event. The model
creates a regression model to predict the likelihood that a given
data input belongs to the ‘1’ category. The sigmoid function
is used by LR to model the data. (g(z) = H%).

3) Decision Tree: This is a tree-based method in which
nodes represent features, leaves represent outcomes, and
branches represent decisions. The DT method divides the
dataset into smaller subsets depending on features until all of

the sample points have a final label. The algorithm uses gini
impurity to choose the optimal split, beginning with the root
node and on to the subsequent splits, (Gini =1— Y ;_, p?),
where p; is the probability of the class i in a node. Gini
impurity chooses the best possible split by measuring the
split’s quality. The impurity with the lowest and best value
is zero. When all of the samples have the same label, this is
achieved.

4) Random Forest: A parallel ensemble method is the RF
algorithm. Ensemble methods are a class of techniques that
combine numerous ML algorithms into a single predictive
model. This is done to reduce bias (boosting), variation
(bagging), or to improve predictions (stacking). In greater
detail, boosting aims to reduce bias by iteratively adjusting the
weights or focus on misclassified instances. Bagging helps to
decrease variation by aggregating predictions from multiple
models trained on different subsets of the data. Stacking
leverages the predictions of multiple models as input to a
meta-model, which improves overall prediction accuracy. RF
is a DT ensemble, which means that it constructs numerous
DTs and combines them through a voting procedure to get a
more stable and accurate forecast. RF belongs to the bagging
algorithm family.

5) Multilayer Perceptron: MLPs are neural networks com-
posed of interconnected nodes (perceptrons) that use weighted
inputs and an activation function to process data. They are
capable of learning complex patterns in non-linearly separable
data through iterative training using backpropagation.

D. Evaluation

The models were evaluated using leave-one-subject-out
cross-validation, a form of k-fold cross-validation where k
equals the number of participants in the dataset. This strategy
ensures subject-independence, utilises most of the information,
and prevents over-fitting.

V. RESULTS

Two datasets were used to classify the level of alexithymia.
Dataset 1 included subjects with either low or high alex-
ithymia. Dataset 2 on the other hand included subjects with
low, medium, or high alexithymia. Furthermore, physiological
and audio signals were obtained for dataset 2.

Figure 1| shows the physiological data distribution for the
two datasets with only low and high alexithymic participants.
To visualise the distribution of the five physiological signals
a boxplot was used for each signal.

The project involved testing several instances, including
binary classification of physiological signals, multi-class clas-
sification of physiological signals, and multi-class classifica-
tion of both physiological and audio signals. For the binary
classification scenario of physiological signals, four distinct
input data scenarios were used: features generated using the
tsfresh library from i) dataset 1, ii) dataset 2, iii) dataset
1 & 2, and iv) concatenated top 10 features from dataset 1
and dataset 2 separately. The data used in this case included
individuals with either low or high alexithymia levels. For the
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Fig. 1: Exploratory data analysis of datasets 1 & 2

multi-class classification scenario of physiological signals, two
input data scenarios were used: features generated using the
tsfresh library from i) dataset 2, and ii) dataset 1 & 2. The
data used in this case included individuals with low, medium,
or high alexithymia levels. In the multi-class classification of
both physiological and audio signals scenario, data exclusively
from dataset 2 was used, which included individuals with
low, medium, or high alexithymia levels. Four distinct input
data scenarios were used: i) the original raw audio signals
were used as input in two pre-trained models, ii) extracted
audio features using librosa library, iii) extracted physiological
features using tsfresh library, and iv) the top 10 audio features
concatenated with the top 10 physiological signals.

A. Physiological signals - Binary classification

Table displays the results of several experiments that
correspond to specific stages of the trial. The experiments
involved using tsfresh features that were calculated from
different combinations of dataset 1 and dataset 2,
as well as concatenated features from both datasets. Four
ML algorithms were utilised to classify participants as either
low or high alexithymics. LR produced the highest fl-score,
achieving 96% in fear-shallow-phase2 dataset 2. RF followed
closely with 94% f1-score for fear-deep-phasel dataset 1. MLP
achieved an fl-score of 90% for fear-deep-phasel dataset 1,
while DT produced an fl-score of 86% for neutral-shallow-
phasel dataset 1.

B. Physiological signals - Multi-class classification

Table shows the results of several experiments that
focused on specific stages of the trial. The experiments
used tsfresh features calculated from dataset 2 only and
dataset 1 & 2 and four ML algorithms for classifying in-
dividuals as having low, medium, or high levels of alexithymia.
The best performance was achieved by MLP, LR, and RF,

TABLE III: Mean F1 (%) scores for binary classification using
physiological features. (F: Fear, J: Joy, N: Neutral, D: Deep processing,
S: Shallow processing, P1: Phasel, P2: Phase2)

Instance Dataset MLP LR DT RF
Dataset 1 83 81 69 85
Universal Dataset 2 59 83 59 81
Dataset 1 & 2 53 62 58 65
Concatenated top features | 68 69 60 77
Dataset 1 90 86 80 94
Dataset 2 64 96 58 76
FDPI Dataset 1 & 2 60 78 61 71
Concatenated top features | 80 87 67 77
Dataset 1 83 86 77 76
Dataset 2 67 70 58 72
FDP2 Dataset 1 & 2 73 72 63 68
Concatenated top features | 72 69 62 75
Dataset 1 86 88 79 85
Dataset 2 70 84 53 51
JDPI Dataset | & 2 72 68 55 74
Concatenated top features | 80 80 6 77
Dataset 1 82 84 79 81
Dataset 2 70 96 38 8
IbP2 Dataset 1 & 2 62 69 62 69
Concatenated top features | 74 70 63 77
Dataset 1 80 79 78 75
Dataset 2 38 83 56 61
NDP1 Dataset 1 & 2 62 61 55 66
Concatenated top features | 62 66 56 68
Dataset 1 83 77 66 81
Dataset 2 56 82 50 79
NDP2 | Dagaset 1 & 2 55 60 53 66
Concatenated top features | 71 71 57 69
Dataset 1 88 88 80 83
FSP1 Dataset 2 76 75 70 82
Dataset 1 & 2 72 75 63 69
Concatenated top features | 70 78 61 77
Dataset 1 75 75 68 8
Dataset 2 71 96 64 58
FSP2 Dataset | & 2 7775 8 13
Concatenated top features | 65 81 62 76
Dataset 1 86 86 74 78
JSP1 Dataset 2 58 74 48 63
Dataset 1 & 2 66 72 56 69
Concatenated top features | 75 74 67 71
Dataset 1 87 86 83 83
Dataset 2 50 76 39 62
ISp2 Dataset | & 2 68 73 59 63
Concatenated top features | 69 74 55 70
Dataset 1 82 88 86 89
Dataset 2 64 63 64 73
NSPI Dataset | & 2 75 68 68 75
Concatenated top features | 79 84 70 75
Dataset 1 77 81 79 79
Dataset 2 51 67 54 69
NSP2 Dataset 1 & 2 59 69 55 62
Concatenated top features | 65 67 65 69

which achieved f1-scores of 85%, 83%, and 79%, respectively.
The DT algorithm had lower f1-score, achieving only 62% for
the joy-deep-phase2 dataset 2.

C. Physiological and audio signals - Multi-class classification

We employed different approaches to process the audio
signals. First, we used the original audio signals as input to
pre-trained models such as wav2vec and Hubert, achieving
fl-score of 42% and 38% respectively. Second, we extracted
multiple audio features using the librosa library. We then
combined these audio features with the tsfresh features from



TABLE 1V: Mean F1 (%) scores for multi-class classification
using physiological features.

Instance Dataset MLP LR DT RF
Universal Dataset 2 85 83 59 79
Concatenated top features | 75 72 45 77
FDP1 Dataset 2 77 79 56 69
Concatenated top features | 81 81 54 75
FDP2 Dataset 2 74 67 56 69
Concatenated top features | 73 72 54 65
IDPI Dataset 2 70 69 51 71
Concatenated top features | 78 69 45 75
1DP2 Dataset 2 75 76 62 75
Concatenated top features | 73 64 46 66
NDP1 Dataset 2 77 75 44 78
Concatenated top features | 70 73 49 66
Dataset 2 69 67 62 73
NDP2 Concatenated top features | 55 65 42 67
FSP1 Dataset 2 82 67 52 74
Concatenated top features | 66 74 46 68
FSP2 Dataset 2 74 75 59 71
Concatenated top features | 75 79 52 74
SP1 Dataset 2 75 77 62 75
Concatenated top features | 77 74 45 62
1SP2 Dataset 2 64 71 53 70
Concatenated top features | 73 68 48 63
NSP1 Dataset 2 74 75 59 76
Concatenated top features | 76 75 5 72
NSP2 Dataset 2 84 8 59 76
Concatenated top features | 77 68 55 59

the physiological signals. Our goal was to perform multi-
class classification to represent a distinct alexithymic category.
Interestingly, our results showed that the traditional ML algo-
rithms outperformed both wav2vec and Hubert. Moreover, the
merged tsfresh and librosa features performed the best among
all the situations tested. This may be because the merged
dataset provides complementary information that improves the
performance of the alexithymia classification models.

TABLE V: Mean F1 (%) scores for physiological and audio
features for the Universal model.

Datasets | MLP LR DT RF
Audio features 63 41 49 46
Physio features 85 83 59 79

Audio & Physio features | 86 85 70 75

VI. DISCUSSION

This study aimed to explore the performance of various
models and datasets for binary and multi-class classification of
alexithymia. For binary classification, we tested four models:
LR, MLP, DR, and RF. We found that LR achieved the best
results, and generally, dataset 1 performed better than dataset
2 or datasets 1 & 2. Additionally, we observed that fear and
joy imagery expression were more effective in classifying
alexithymia than the neutral emotion. Notably, we found that
phase 1 was generally more effective than phase 2, while
depth of processing did not significantly contribute to the
classification. These findings have important implications for
the development of more accurate models for alexithymia
classification.

For multi-class classification, we used the same models as
in binary classification and found that the universal model
achieved the best results for MLP, LR, and RF. We also found
that dataset 2 performed better than dataset 1 or datasets 1 &
2. We observed that fear emotion was more descriptive than
the other two emotions, and similarly to binary classification,
depth of processing and phases were not very descriptive.

Furthermore, we investigated audio classification and found
that pre-trained models and audio mfcc features were not
useful in this case. However, when we combined audio and
physiological features, we achieved better outcomes for the
universal model compared to individual modality results.

Overall, our results suggest that LR and the universal model
are effective models for binary and multi-class classification
of emotions, respectively. Moreover, fear emotion is more
descriptive than other emotions, and depth of processing and
phases do not contribute much to the classification. Lastly,
combining audio and physiological features can enhance the
classification outcome.

In summary, this study has contributed to the field of alex-
ithymia classification by providing a new approach using ML
techniques. Our findings can be useful for developing better
diagnostic tools for alexithymia, which can help clinicians and
researchers to better understand this disorder. However, further
studies are needed to validate our findings and explore other
potential emotions and features for alexithymia classification.
Virtual reality simulations can also be used to induce emotion
processing imagery in participants, thereby generating more
diverse and controlled datasets.

VII. CONCLUSION

This study provides novel insights into the classification of
alexithymia using ML techniques, in particular by providing
ML approaches for classifying alexithymia using physiological
and audio signals. Our findings suggest that fear might be
the most representative emotion for alexithymia classification.
Furthermore, we observed that traditional ML algorithms out-
perform pre-trained models, indicating that models with fewer
degrees of freedom might generalise better when the data is
scarce. The quality of the dataset was also found to be critical
in achieving good results, emphasising the need for more
algorithms to further improve the classification performance.
Lastly, our results indicate that multi-modality outperforms
unimodal approaches, which is in agreement with previous
work in this area [[12]. Finally, we hope that the collected
datasets will further encourage research in this direction.

ETHICAL IMPACT STATEMENT

Ethical considerations are essential in the field of affective
computing, particularly when dealing with human emotions
and sensitive data. In this study, we obtained informed
consent from all participants and ensured the anonymity and
confidentiality of their data. We encourage researchers and
practitioners in this field to continually evaluate and address
ethical concerns and implications in their work, particularly
regarding the privacy and well-being of individuals involved.
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