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ABSTRACT
Alexithymia is a trait reflecting a person’s difficulty in identifying

and expressing their emotions that has been linked to various forms

of psychopathology. The identification of alexithymia might have

therapeutic, preventive and diagnostic benefits. However, not much

research has been done in proposing predictive models for alex-

ithymia, while literature on multimodal approaches is virtually non-

existent. In this light, we present, to the best of our knowledge, the

first predictive framework that leverages multimodal physiological

signals (heart rate, skin conductance level, facial electromyograms)

to detect alexithymia. In particular, we develop a set of features

that primarily capture spectral-information that is also localized in

the time domain via wavelets. Subsequently, simple classifiers are

utilized that can learn correlations between features extracted from

all modalities. Via several experiments on a novel dataset collected

via an emotion processing imagery experiment, we further show

that (i) one can detect alexithymia in patients using only one stage
of the experiment (elicitation of joy), and (ii) that our simpler frame-

work outperforms compared methods, including deep networks, on

the task of alexithymia detection. Our proposed method achieves

an accuracy of up to 92% when using simple classifiers on specific

imagery tasks. The simplicity and efficiency of our approach makes

it suitable for low-powered embedded devices.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches.
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1 INTRODUCTION
Alexithymia was firstly defined as the inability to describe emo-

tions with words by Sifneos in 1972 [1]. Alexithymic individuals

experience difficulties in recognising, identifying and describing

emotions, and have a tendency towards focusing their thoughts on

external stimuli rather than inner ones [2]. However, it is not con-

sidered a psychiatric disorder but rather as a personality trait which

is associated with, and strongly predicts such disorders [3], but also

physical and psychosomatic problems. In general, clinically relevant

alexithymia affects approximately 10% of the general population [4].

∗
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Alexithymia is often assessed subjectively using self-reporting

tools, using the the Toronto Alexithymia Scale (TAS-20). It is the

most widely used self-reporting tool, hence considered as the gold

standard in the field [5]. In the search to identify more objective

markers of alexithymia, however, it has been noted that it is also

characterized by differences in physiological reactivity towards

emotional experiences, although research in the field has often

resulted in inconsistent findings about the nature of these differ-

ences [6]. Even more, these physiological differences are often

considered as central features contributing to the phenomenology

of alexithymia, and perhaps also its etiology and maintenance, an

assumption [7] that has not been empirically validated yet. To be

able to identify the relative contribution of physiological markers

during emotion processing to the core difficulties of alexithymia,

research needs to employ advanced technological and statistical

methods, that allow the simultaneous assessment of multiple sig-

nals, as they unfold dynamically over time, as can be accomplished

with Machine Learning (ML) [8]. Furthermore, efficient predictive

models can also lead to implementations in embedded systems and

particularly wearables. This would have technical benefits such as

reducing experimental time, monitoring patients remotely in real-

time, measuring physiological signals that are less obtrusive, and

working efficiently in comparison to more costly ML algorithms [9].

This line of research has also theoretical benefits such as increasing

our understanding of alexithymic deficits, e.g. are these arousal-

related (i.e. depend on emotional intensity reflected in autonomic

nervous system (ANS) signals, like skin conductance) or valence-

related (i.e. depend on the unpleasantness of a situation reflected

in facial expression signals). Importantly, it can also have clinical

interventions, as the identification and treatment of alexithymic

difficulties may prevent the future development of disorders that

are strongly correlated with it (i.e. depression).

In this light, we present, to the best of our knowledge, the first

attempt to use multi-modal signals as predictors for alexithymia

using ML, and one of the few that do this with any method. In

particular, we present an approach for detecting alexithymia from

five physiological signals, sampled from three different modalities

as seen in Table 1 (electrocardiogram (ECG), electrodermal activ-

ity (EDA) and electromyography (EMG) [10]). In particular, we

develop a novel set of features that capture spectral and temporal

information from multimodal signals, whereas simple classification

algorithms are subsequently used to capture cross-modal correla-

tions in the feature space. We evaluate our framework on a study
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that used affective imagery to elicit emotions, aiming to identify

differences between control and alexithymic volunteers using the

TAS-20 [11]. We show that the proposed framework can lead to an

accuracy of up to 92%, using data from only one small portion of

the experiment - an insight that can lead to reduction of experimen-

tal time and cost. Most interestingly, we show that our approach

consistently outperforms deep neural networks on the task of alex-

ithymia prediction albeit being much more efficient, reaching an

accuracy of up to 92%. The efficiency of the proposed approach can

make it suitable for embedded systems and low-power devices, and

can lead to improvements in the utilization of self-reporting tools.

2 RELATEDWORK
Emotion recognition and the study of human emotional processes

using physiological signals received increased attention recently

[12]. The study of alexithymia through the lens of ML using phys-

iological signals to characterize it is quite new, hence not many

studies have been conducted for this matter. For this reason, this

section presents studies that used physiological signals for emotion,

depression, and anxiety detection.

ML approaches follow twomain paths, a) classical ML algorithms

with manual feature engineering approaches (i.e. hand-crafting)

and b) Deep Learning (DL) models, where hierarchical, compo-

sitional representations are learned in a task dependent manner.

Different feature engineering approaches exist to extract and se-

lect useful features. Studies used sequential forward and backward

feature approaches [13] and manual extraction of features [14, 9].

Additionally, studies showed that the number of features needed to

achieve high accuracy scores ranges between five and 14 features

[13, 14, 9] for emotion recognition.

More recently, researchers applied DL algorithms to predict emo-

tions, and components of emotions e.g. arousal, valence, dominance.

Some of the most common DL algorithms used are: Deep Neural

Network (DNN) [15, 16], Convolutional Neural Network (CNN) [15,

17, 16] and recurrent neural network (RNN) such as Long Short-

Term Memory (LSTM) [18, 19, 16]. In [15], DNN and CNN models

were developed, and in [18], a bimodal LSTM was developed for

emotion recognition. Both studies achieved mean accuracy greater

than 75% for the classification of valence and arousal. Other studies,

developed models for anxiety detection by using different phys-

iological signals. In [17], a 1D CNN was trained on ECG-based

features to detect anxiety of arachnophobic individuals, reaching

accuracy of 83.29%. In general, DLmodels outperformed the simpler,

traditional algorithms as they are more likely to optimize extracted

features [19, 16].

Furthermore, other studies extracted spectral features from the

physiological signal, converted those features into images and then

used pre-trained models for classification tasks. For example, both

[20] and [21] used deep transfer learning for emotion recognition

using physiological signals to classify arousal and valence. Nima et

al. [8] was the only paper identified to predict alexithymia using ML

but by recording a video with the facial expressions of the volun-

teers. Therefore, our model is the first model developed to predict

alexithymia using physiological signals that include ANS indices of

arousal, as well as facial responses that describe emotional valence.

3 DATASET
In this section, we describe the experimental conditions and set-

tings under which the dataset has been collected. In more detail,

we describe details of participants (Sec. 3.1), the settings (Sec. 3.2),

and the data acquisition process (Sec. 3.3).

3.1 Subjects
Participants (N=52) were young, healthy adults, recruited from two

universities in Cyprus. They were screened with the TAS-20, which

was translated into Greek and validated by Anagnostopoulou and

Kossieoglou [22]. The scale assesses on a 5-point scale difficulty

identifying feelings, difficulty describing feelings, and externally

oriented thinking. The total score was used to identify clinical lev-

els of alexithymia using established standards of ≥ 60 for high

alexithymia (M = 65.44, SD = 4.29) and ≤ 51 for low alexithymia

(M = 40.37, SD = 6.59) [23]. Exclusion criteria for the study were

any medical or mental health conditions that can interfere with

ANS reactivity, e.g. cardiac problems, depression etc. and regular

medication use. Of those eligible for the study, data from 52 par-

ticipants was used (27 high alexithymia, 25 low alexithymia) due

to data availability. The mean age was 21.31 (SD: 2.96). Of the 52

participants, eight identified as male and 44 as female. Half of the

male participants were low alexithymic and the other half were

high alexithymic. In terms of the female participants, 21 were low

alexithymic and 23 were high alexithymic.

3.2 Experiment design
The experiment was conducted as a 2 × 3 × 2 mixed design. That is,

the population was split into two groups (high / low alexithymia),

where each group imagined three emotions (fear / joy / neutral) in

two depths of processing (shallow / deep) [22]. In total each partic-

ipant completed ten imagery trials, four fear, four joy, two neutral,

where half of them were under shallow processing task and the

other half were under deep processing task. Dependent variables

included: two signals that are consider to reflect levels of arousal

(heart rate (HR) and skin conductance level (SCL)), and three sig-

nals, which reflects changes in experienced valence i.e. responses

differentiate based on pleasantness vs. unpleassantnes feelings (or-

bicularis (ORB), corrugator (COR), zygomaticus (ZYG)) assessed

during baseline and emotional imagery. Participants also provided

self-reports oh how they felt (emotional labelling, valence, arousal

and dominance ratings) at then end of each imagery trial. Details

about the filtering of each physiological signal can be found in

Constantinou et al. [11].

3.3 Data acquisition
3.3.1 Data sources. Physiological datawere collected using BIOPAC
MP150 for Windows and AcqKnowledge 3.9.0 data acquisition soft-

ware (Biopac Systems Inc., Santa Barbara, CA). Electrodes were

placed on the face and arms of the participants following standard

procedures. Figure 1 demonstrates the placements of sensors for

each signal.

3.3.2 Imagery materials. Ten standardized scripts, describing ev-

eryday fear, joy and neutral situations were selected from a larger

pool of emotional scripts validated in the specific population [24].



A Wavelet-based Approach for Multimodal Prediction of Alexithymia from Physiological Signals

Figure 1: Overview of the proposed framework. Data collection of the five multi-modal physiological signals from several
body locations. The data is extracted and pre-processed, while feature selection is done via statistical testing using the tsfresh
package. The most commonly selected features are visualized - namely wavelet and Fourier coefficients. Finally, parametric
(MLP, LR), and non-parametric models (DT, RF) are used for classification

Specifically, joy and fear scripts were selected so that they differed

significantly on valence, but not on arousal, whereas neutral scripts

differed from both joy and fear scripts on both dimensions. Af-

fective imagery has been used effectively to induce emotions of

varying valence and arousal levels [25], and these three categories

of emotions allow us to examine valence and arousal effects on

physiological reactivity independently. All participants received

all scripts in three semi-counterbalanced orders. Scripts were in

the first person, two-sentence long and contained references to

physical reactions. Further details and examples of scripts can be

found in Constantinou et al. [11].

3.3.3 Experimental protocol and set-up. Participants arrived at the

lab, and sat in a reclining chair in a dark, sound-attenuated room.

Following informed consent, they completed a brief set of question-

naires, and were given instructions and fitted with physiological

monitors. Prior to the experiment, a five-minute adjustment period

was executed to stabilise physiological recordings and familiarise

participants with the equipment. Then, participants were firstly in-

structed with which depth of processing they will execute the trial,

and secondly they were given an index card with the imagery script

to memorise. They started to imagine the scripts at the tone cue.

Shallow and deep instructions differed in the elements of imagery.

For the shallow condition, participants were asked to imagine the

scene as vividly as possible, and were told that at the end they had

to recall and write down elements of the imagined environments

(objects, people, animals). For deep processing, instructions guided

participants to emphasise affective reactions and other subjective

experiences. They were asked to imagine the scene as vividly as

possible, as if they were actively participating, and later write down

a summary of their reaction, including thoughts, behaviours, and/or

bodily changes, whatever they considered necessary for an actor to

exactly impersonate them. The information provided by each par-

ticipant at the end of each trial (number of objects/people/animals

for shallow processing and thoughts/behaviours/bodily changes

for deep processing) were used as a manipulation check that par-

ticipants engaged in the specific type of task. No participants were

removed for not engaging in the tasks, and the two groups (alex-

ithymic, control) did not differ in task performance (see Constanti-

nou [11]).

Ten imagery trials followed, one for each of ten scripts [22].

Each trial consisted of three phases: 1) a 20s resting baseline, during

participants were instructed to clear their mind and relax, 2) a 60s

imagery phase-1, during participants were instructed to imagine

the script that they read and 3) a 40s imagery phase-2, during partic-

ipants were instructed to re-imagine the script. At the end of each

phase-1, the participants were asked to report what they imagined

depending on the depth of processing for the particular script.

4 METHODOLOGY
Nowadays, Deep Learning (DL) is mostly used because the devel-

oped network is able to learn and make intelligent decisions on its

own. However, due to the high dimensionality of the signals, which

is usually higher than the number of subjects (considering the same

experimental conditions), DL results may be relatively poor. This

was confirmed in our case by our results (Sec. 5). In this light, by

means of statistical hypothesis time-series on multiple time-series

features, we propose a set of spectral features for alexithymia de-

tection (Sec. 4.2). In this way, we reduce the dimensionality of the

problem to a few scalars per time-series signal. As we show by

our experiments, the devised features are discriminative for alex-

ithymia, reaching accuracy of up to 92%, using only one stage of
the experiment e.g. Joy-Shallow-Phase-1. In this section, we discuss

data pre-processing (Sec. 4.1), feature extraction and selection (4.2),

the classification models employed (Sec. 4.3), as well as the valida-

tion method used for the algorithms (Sec. 4.4). Finally, in Figure 1

we provide an overview of the steps followed for this study.

4.1 Data pre-processing
The files from the BIOPAC software were imported into Python™

(v.3.8.8) for analysis. The extracted files contained several columns

representing: time, HR, SCL, ORB, COR, ZYG, and digital channels

indicating the stage of the experiment. The digital channels (i.e.

stages of the experiment) were: phase-1, phase-2, arousal, valence,
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tone-1 (shallow processing) and tone-2 (deep processing), and they

were presented by binary representations. The phases were used to

indicate the imagery period of the experiment which were: baseline

(20sec), first imagery period (60sec) and second imagery period

(40sec). The arousal and valence were used to indicate the emotion

of the script used. Lastly, the tones were used to indicate the depth

of processing of the experiment which was either shallow or deep.

As aforementioned, this describes the way that subjects responded

to what they imagined at the end of the experiment.

Table 1 defines the signals and their modalities.

Table 1: Modalities used to measure physiological signals

Modality Definition Physiological
signal

ECG Measures the potential differences iden-

tified at the skin surface due to electrical

activity of the heart

HR

EDA Measures the electrical conductivity of

the skin

SCL

EMG Measures the skeletal muscle electric

activity at the skin surface. It is used for

both facial or body expressions

ZYG, COR,

ORB

All the signals were recorded with a sampling frequency of 1000

Hz, however phase-2 in some cases had sampling frequency of 125

Hz. Therefore, the first step was to resample phase-2 signals to

1000 Hz where necessary. The next step was to select only the data

of interest that included the data recorded from the 10 trials. This

means that any inter-trial intervals data was removed. This was

indicated by the values of the digital signals and based on these

values the data was broken down into different cases.

As shown in Figure 1, the raw data was then downsampled for

each participant independently to improve memory complexity.

The down-sampling was achieved by using the polyphase filter

resampling [26] with down-sampling factor N = 300 [27]. This num-

ber is equal to three seconds, which is considered sufficient for

emotional changes to be identified (verified empirically and with

trials). The data was scaled according to the requirements of each

algorithm. Additionally, the mean and standard deviation of each

of the five signals for each participant were calculated to be used

as a baseline in the binary classifiers.

4.2 Feature extraction and selection
In order to efficiently extract and select relevant features from the

multivariate signals, the tsfresh python library was used [28]. Ts-

fresh extracts a large number of time-series features (794), in order

to describe a time series dataset with respect to a target variable.

Statistical hypothesis testing is employed in order to evaluate the

discriminative performance and importance of extracted features

for a specific task. In our case, the ten most relevant features were

selected to be used as input into the classifier.

For each individual experiment, various tsfresh features were ex-

tracted, resulting in 3915 attributes for each subject. Using the target

variable, the relevance of the aforementioned features was calcu-

lated in order to keep the top ten for each subject. Therefore, the

resulting data structure was a matrix X ∈ R52×10. The top features

for the best stage of the experiment, which were Joy-Shallow-Phase-

1 and Neutral-Shallow-Phase-1, are presented in Table 2.

Table 2: Top k=10 features extracted via tsfresh

Stage: Joy-Shallow- Phase-1
SCL regression

a
, attribute: intercept, chunk length: 50,

function: variance

SCL Continuous Wavelet Transform, coefficient: 3, width: 20

SCL Continuous Wavelet Transform, coefficient: 4, width: 20

ORB Fast Fourier Transform, attribute: real, coefficient: 49

SCL Continuous Wavelet Transform, coefficient: 2, width: 20

SCL Continuous Wavelet Transform, coefficient: 1, width: 20

SCL Continuous Wavelet Transform, coefficient: 5, width: 20

SCL Continuous Wavelet Transform, coefficient: 0, width: 20

SCL Continuous Wavelet Transform, coefficient: 6, width: 20

SCL Continuous Wavelet Transform, coefficient: 7, width: 20

Stage: Neutral-Shallow-Phase-1

SCL Continuous Wavelet Transform, coefficient: 0, width: 2

SCL Continuous Wavelet Transform, coefficient: 9, width: 5

SCL Continuous Wavelet Transform, coefficient: 8, width: 5

SCL Continuous Wavelet Transform, coefficient: 5, width: 2

SCL Continuous Wavelet Transform, coefficient: 6, width: 2

SCL Fast Fourier Transform, attribute: real, coefficient: 23

SCL Continuous Wavelet Transform, coefficient: 7, width: 2

SCL Fast Fourier Transform, attribute: angle, coefficient: 10

SCL Fast Fourier Transform, attribute: real, coefficient: 14

SCL regression
a
, attribute: slope, chunk length: 5,

function: variance

a
Linear least-squares regression aggregated over chunks

Considering the top features from Table 2, fft_coefficient
and cwt_coefficients were the most common features that ap-

peared. Namely, the former calculates the discrete Fourier Trans-

form coefficients [29], given by:

𝑋𝑘 =

𝑁−1∑︁
𝑛=0

𝑥𝑛𝑒
− 𝑖2𝜋

𝑁
𝑘𝑛

(1)

using the Fast Fourier Transform algorithm [30]. The coeffi-

cient for either the real, imaginary, magnitude or angle in degrees

components of the expansion are extracted. On the other hand

cwt_coefficients, performs a Continuous Wavelet Transform

for the “Mexican hat wavelet" [31] given by:

𝜓 (𝑡) = 2

√
3𝜎𝜋

1

4

(
1 − 𝑡2

𝜎2

)
𝑒

−𝑡2
2𝜎2

(2)

where 𝜎 is the scale factor. Empirical evidence suggests that the

specific wavelet can describe a signal using a relatively small num-

ber of parameters, when compared to other wavelets [32]. The

aforementioned features are extracted via a parallel feature selec-

tion algorithm based on statistical hypothesis tests such as the

Mann-Whitney U [33] or Kolmogorov Smirnov [34]. These tests are
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configured based on the label type (categorical or continuous) and

the supervised ML problem (regression or classification) in hand
1
.

4.3 Classification
Classification models were used in order to identify whether the

volunteer is alexithymic or control. Specifically, deep neural net-

works (DNNs), decision trees (DT), random forests (RF), multilayer

percpetrons (MLP) and logistic regression (LR) models with several

hyper-parameter configurations.

Deep Neural Networks. With the exponential increase of com-

putational power and availability of data, Deep Learning (DL) has

become a vital tool for researchers, especially in medical appli-

cations and computer vision. As CWTs were amongst the most

descriptive features, we decided to apply CNN architectures in or-

der to classify the CWT features for both classes of subjects. This

was also motivated by poor performance on raw features, espe-

cially with recurrent nets (e.g. LSTMs). Also, spectral features are

commonly used for similar tasks, as discussed in Sec. 2.

Training DLmodels from scratch is a demanding process in terms

of data volume. To alleviate poor performance, we utilised transfer
learning [35]. That is, we used well established computer-vision DL

models, already trained on large image datasets, by only modifying

their feature extraction layer weights. The latter was achieved by

training the specific layer on our dataset, for a small number of

epochs, while keeping the rest of the weights fixed. Specifically, we

used our CWT images to fine-tune the ResNet [36], DenseNet [37]

and AlexNet [38], all of which have been pre-trained on the Image-

Net dataset [39], and have performed extremely well in computer

vision tasks.

Logistic Regression. LR is a classification algorithm. It is used

to calculate (or predict) a binary (yes/no) event based on a set of

independent variables. The model builds a regression model to pre-

dict the probability that a given data entry belongs to the category

numbered as “1”. LR models the data using the sigmoid function

(𝑔(𝑧) = 1

1+𝑒−𝑧 ).

Decision Tree. This is an algorithm represented by a tree where

nodes represent the features, leaves represent the outcomes and

branches represent the decisions. The idea behind the DT algo-

rithm is that the dataset is divided into smaller subsets based on

the features until all the sample points get a final label. The par-

ticular algorithm uses gini impurity to decide the best split start-

ing from the root node and further to the other subsequent splits,

𝐺𝑖𝑛𝑖 = 1 − ∑𝑐
𝑖=1 𝑝

2

𝑖
), where 𝑝𝑖 is the probability of the class i in

a node. Gini impurity selects the best possible split by measuring

the quality of the split. Value zero is the lowest and best possible

impurity. This is achieved when all the samples have the same label.

Random Forest. The RF algorithm is a type of parallel ensemble

method. Ensemble methods are a set of techniques that combine

multiple ML algorithms into one predictive model. This is done

either to decrease bias (boosting), variance (bagging), or improve

predictions (stacking). RF is an ensemble of decision trees, which

means that RF builds several decision trees and combines them by

1
https://tsfresh.readthedocs.io/en/latest/

a voting process to get a more stable and accurate prediction. RF

falls in the family of bagging algorithms.

Multilayer Perceptron. This algorithm consists of multiple single

perceptrons, where each consists of weights and bias, a combina-

tion function and an activation function. It deals with non-linearly

separable data. The algorithm accepts n input variables, x, which
are the multiplied with the weights w. Then, a sum of all these

calculations is determined.

𝑦 =

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 (3)

The activation function 𝜙 is then used to check the sum if it

exceeded a certain threshold.

𝑦 =

{
1, 𝑖 𝑓 𝜙 (𝑤 · 𝑥 + 𝑏) > 0

0, 𝑖 𝑓 𝜙 (𝑤 · 𝑥 + 𝑏) ≤ 0

(4)

4.4 Evaluation
A leave-one-subject-out cross-validation was used to evaluate the

models. This approach utilizes each individual subject as a “test”

set. It is a specific type of k-fold cross validation, where the number

of folds, k, is equal to the number of participants in the dataset.

We choose this approach to ensure that our results are subject-
independent while exploiting the majority of the dataset, and to

reduce the possibility of over-fitting.

5 EXPERIMENTS AND RESULTS
Two approaches were followed to classify alexithymic and control

subjects (𝑛 = 52). The first approach used pre-trained deep neural

networks and the second approach used extracted features and ma-

chine learning models. These two approaches showed that spectral

features are informative for the specific classification.

The feature extraction process results showed that spectral rep-

resentations constitute appropriate descriptors for alexithymia in

physiological signals, demonstrating the most statistical signifi-

cance. Additionally, the most informative physiological signal was

SCL as shown in Table 2. Therefore, for the pre-trained DNN, only

the SCL signal was used. As aforementioned, we fine-tuned three

CNN architectures, namely DenseNet, AlexNet and ResNet. Table 3

demonstrates the average accuracy of the stages of the experiment

using the networks. The majority of the results are around 50%,

however Neutral-Shallow-Phase-1 achieved the highest score that

was above 72.9 % in all three networks.

Regarding the results of the simpler ML algorithms, an accuracy

of over 92% was achieved using both LR and MLP as shown in Table

4 (experiments Fear-Shallow-Phase-1 and Neutral-Shallow-Phase-

1). In the majority of experiments, MLP and LR had comparable

results - the best overall in terms of accuracy, followed by RF and

subsequently DT with the worst performance. As shown in Table

4, Joy-Shallow-Phase-1 experiment had the best performance using

MLP and LR in comparison to all the tests performed. Figure 2

shows the confusion matrix of both control and alexithymic groups,

where they achieved a precision and a recall scores of 0.92. That is,

92% of the predicted alexithymic subjects were indeed alexithymic

(precision). Further, the classifier correctly classified 92% of the

alexithymic subjects as alexithymic (recall).

https://tsfresh.readthedocs.io/en/latest/
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Table 3: Accuracy of DNN models fine-tuned on 2D CWT
spectograms derived from SCL signal

Depth Phase Emotion AlexNet DenseNet ResNet

Universal 0.579 0.496 0.438

Universal
a

0.579 0.496 0.438

Fear
a

0.546 0.529 0.558

Deep 1 Joy
a

0.608 0.588 0.625

Neutral
a

0.533 0.529 0.554

Fear
a

0.546 0.562 0.617

Shallow 1 Joy
a

0.588 0.571 0.600

Neutral
a 0.738 0.788 0.729

Fear
a

0.558 0.629 0.612

Deep 2 Joy
a

0.550 0.462 0.612

Neutral
a

0.533 0.600 0.500

Fear
a

0.583 0.629 0.700

Shallow 2 Joy
a

0.521 0.629 0.562

Neutral
a

0.629 0.646 0.642

a
Scaling prior to feature extraction

Table 4: Accuracy results using LOSO cross-validation

Depth Phase Emotion MLP LR DT RF

Universal 0.830 0.800 0.520 0.772

Universal
a

0.712 0.731 0.712 0.788

Mean-Std Universal 0.588 0.500 0.692 0.538

Fear
a

0.788 0.769 0.750 0.750

Deep 1 Joy
a

0.784 0.784 0.804 0.804

Neutral
a

0.735 0.592 0.653 0.694

Fear
a

0.827 0.846 0.635 0.846

Shallow 1 Joy
a 0.920 0.920 0.820 0.840

Neutral
a

0.891 0.913 0.826 0.848

Fear
a

0.731 0.769 0.731 0.788

Deep 2 Joy
a

0.780 0.760 0.800 0.800

Neutral
a

0.694 0.776 0.653 0.776

Fear
a

0.788 0.731 0.750 0.846

Shallow 2 Joy
a

0.880 0.820 0.860 0.860

Neutral
a

0.870 0.826 0.761 0.848

Mean 0.788 0.769 0.731 0.787

Std 0.088 0.108 0.090 0.083

Figure 3 presents the receiver operating curve (ROC). The best

performing model is MLP, achieving 0.96 AUC score.

As already mentioned, Joy-Shallow-Phase-1 was the experiment

that achieved the best performance for classifying alexithymic and

control participants. Figure 4 demonstrates the accuracy scores

while using different number of features. MLP and LR achieved 92%

accuracy score by only using the first four features. These features

are the ones mentioned in Table 2 with ascending order.

Furthermore, literature suggested that spectral features in gen-

eral (including CWT) are informative. Additionally, our feature

extraction results showed that CWT is one of the most informative

features. Therefore, CWTs of the required signals were plotted in

Figure 2: Confusion matrix of Joy-Shallow-Phase-1 experi-
ment using LR and MLP, which had exactly the same perfor-
mance.

Figure 3: ROC of elicited joy (JSP1)

Figure 4: Accuracy for Joy-Shallow-Phase1 with 1:10 features

order to visualise the cross correlation between the signal and the
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Figure 5: Visualization of the CWT using the Mexican hat wavelet for three Control (top) and three Alexithymic Subjects
(bottom)

Mexican hat wavelet, at different widths of the transform. As demon-

strated in Figure 5 brighter regions correspond to a stronger cross-

correlation whereas darker regions indicate low cross correlation.

Here, the most relevant features are the coefficients that correspond

to the brightest regions, in combinations with the width of the trans-

form where the best cross-correlations occur. For example, in the

case of Joy-Shallow-Phase-1, these coefficients lie early in the signal

and show a high cross-correlation with the Mexican hat wavelet

of width 20. Additionally, the left part of the Figure 5 was used as

the input into the pre-trained networks. DNNs were fine-tuned on

data that had the same format as the left-hand side of the figures.

It is worth noting that the wavelet width and CWT coefficients

identified by the feature extractors are the same for all subjects as
the data transformation applied is global. By examining Figure 5 we

notice that the coefficient (dashed line) is near the region of the first

peak for the majority of the subjects. This suggests that the specific

region contains valuable information regarding the presence of

alexithymia. What is more, we also notice that the aforementioned

peak is slightly shifted to the right for alexithymic subjects, as seen

in Figure 5. This also implies that the specific region might be quite

expressive.

6 DISCUSSION
In general, our results demonstrated high levels of accuracy for the

binary classification for the simpler ML approaches, namely MLP

and LR, especially when using data from the Joy-Shallow-Phase-

1 and Neutral-Shallow-Phase-1. This can possibly be attributed

to greater differences in emotion variation between control and

alexithymic groups during this experiment. Parametric approaches

(MLP & LR) have outperformed the non-parametric approaches

(tree-based approaches) for Joy-Shallow-Phase-1, although there is

no clear pattern of a best-performing model, as these methods vary

from phase to phase. When comparing the mean accuracy we notice

that MLPs and RFs slightly outperform the two other approaches,

although the mean accuracy of all four methods is similar. It can be

argued that MLP and LR performed better in the cases of interest

due to the fact that only continuous features were identified as

relevant during the feature extraction stage. Although tree based

models tend to perform well in binary classification tasks, they

usually require a larger sample size, compared to LR models. This

might also be a reason behind the relatively good performance of LR

in Joy-Shallow-Phase-1 and Neutral-Shallow-Phase-1. As expected,

RF outperform DT, since RF constitute a more generalised solution.

Considering the LR and MLP algorithms, in the majority of the

experiments MLP showed greater performance than LR, which is

again expected as it is a more expressive model.

Interestingly, the proposed approach outperforms deep networks

on this task. In particular, three pre-trained models were fine-tuned

to classify alexithymia (ResNet, AlexNet and DenseNet). Results

suggest that CWT features extracted from the physiological signals

can perform well in the specific transfer learning context. High-

est accuracy was achieved in experiment Neutral-Shallow-Phase-1.

Similarly, the specific experiment achieved the second highest score

while using simple ML models. This indicates that the correspond-

ing stage of the experiment can provide insight to a person’s level of

alexithymic traits. We note that experiments with LSTMs have been

conducted using raw physiological signals, however performance

was only slightly better than random.

7 CONCLUSION
We presented a predictive framework that leverages multimodal

physiological signals to detect alexithymia in subjects. Namely, we

develop a set of spectral-based features using statistical hypothesis

testing, that are shown to be discriminative in terms of the alex-

ithymia score of a given subject across a variety of methods. The

proposed framework outperforms complex Deep Networks that

have been pre-trained and utilized via transfer learning, achieving

an accuracy of up to 92% when using simple classifiers. Further-

more, we find insights that can inform experiment design - such

as two particular emotion elicitation experiments, namely joy and

neutral, that are consistently easier to classify - indicating that

the difference in emotion variation might be higher in these cases.

The proposed approach is efficient, which is a desirable property

for implementations in low-power embedded systems and sensors,

while its simplicity can further lead to interpretable results.
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